最近收到很多小伙伴在催LangGraph系列
AI Agent能够执行自动化任务、回答用户查询、进行数据处理等,广泛应用于客户支持、智能推荐、内容生成等领域。
AI Agent的领域技术复杂性往往让初学者望而却步
无论是刚踏入AI领域的开发者
还是对Agent系统感到好奇
现在就通过使用LangGraph创建一个简单但功能齐全的来分解基础知识
今天分为两个部分!帮助你快速入门
第一部分:LangGraph的组成部分
第二部分:构建和执行你的第一个AI代理
构建 AI 代理的价值远不止于自动化某些任务
AI 代理的价值体现哪些方面
提高效率、增强用户体验、便捷的构建与部署…
一、LangGraph中图的主要组成部分
1.1节点
节点只是python函数接收图的状态作为首个参数
通过这个参数
节点可以了解Graph中的动态并更新状态,实现与Graph的交互。
每个节点的操作都基于对这一共享状态的处理和修改。
默认情况下,节点还会覆盖前置状态值
1.2边
可以将边视为顶点,将两个端点连接在一起
边只是两个节点之间的连接
1.2.1边它分为什么类型呢?
①普通边是指没有设置任何条件的边
②条件边是指仅在特定条件满足时才会被遍历的边
根据执行一系列逻辑判断和条件语句来,返回下一个的节点名称
通常使用if和else语句来实现,根据条件判断返回下一个要访问的节点
1.2.2额外知识点
①孤立节点在图论中,孤立节点是没有任何边与其他节点相连的节点/顶点,是完全与图中其他部分断开的顶点,度数为0
②状态基本上是我们在图形的不同节点和边之间传递的对象
状态通常是处理图时首先定义的关键要素
在构建的过程中,状态对象承载了必要的上下文信息,为各个组件之间的交互提高标准化数据格式
话不多说,现在开始!动手来!
一定要动起手来跑!
AI发展飞快!只有动手了,才知道里面会遇到什么问题,才能知道,底层原理是什么!
二、构建一个简单的Graph
构建Graph节点
首先,在构建图时,我们需要创建一些节点。
ok 暂时不考虑节点,我们首先需要思考图应该执行什么功能
将这些思考和构思转化为普通的Python函数
这些函数实际上就是图中的节点。
def node_01(state: State):` `print(f"node_01: {state['graph_msg']}")` `# 覆盖状态中graph_msg` `return{"graph_msg": state["graph_msg"] + "node_01"}``def node_02(state: State):` `print(f"node_02: {state['graph_msg']}")` `# 覆盖状态中graph_msg` `return {"graph_msg": state["graph_msg"] + "node_02"}``def node_03(state: State):` `print(f"node_03: {state['graph_msg']}")` `# 覆盖状态中graph_msg` `return{"graph_msg": state["graph_msg"] + "node_03"}
这里可以看到每个节点
每个节点都会修改图形状态
如果你在python中有段代码
你可能会收到警告
因为
我们没有定义图形的状态
但是!接下来,我们不这样做
2.1构建Graph状态
Graph的状态对象用于维护Graph中当前活动的短期记忆
并作为参数传递给每个节点。
在 LangGraph 中,我们利用TypedDict、Pydantic
和内置类来构建和管理这些状态对象。
为了保持实现的简单性和清晰度
我们将使用TypedDict来定义图形状态。
from typing import TypedDict``class State(TypedDict):` `graph_msg:str
现在我们的状态包含一个名为graph_msg的变量
用于储存Graph的消息
从上述节点的代码可以观察到如何在每个Graph节点中更新变量
2.2构建实际Graph
现在我们已经拥有了所需的组件!
首先!
我们传入Graph的状态
使用LangGraph中的类完成
我们将导入该类StateGraph
2.3添加所有的节点
将所有节点添加到Graph中
from langgraph.graph import StateGraph, END, START``# 定义Graph及其状态``builder = StateGraph(State)``# 添加所有节点``builder.add_node("node_01", node_01)``builder.add_node("node_02", node_02)``builder.add_node("node_03", node_03)
START是一个特殊的节点
将状态传递给Graph以初始化Graph代理
这标志着执行的起点
END是另一个指示终止点的特殊节点
2.4添加边
然后!继续向Graph添加边
from langgraph.graph import StateGraph, END, START`` ``# 定义Graph及其状态``builder = StateGraph(State)`` ``# 添加所有节点``builder.add_node("node_01", node_01)``builder.add_node("node_02",node_02)``builder.add_node("node_03",node_03)`` ``# 连接Graph的节点与边``builder.add_edge(START, "node_01") # 正常边``builder.add_conditional_edges("node_01", select_next_node) # 条件边``builder.add_edge("node_02", END) # 正常边``builder.add_edge("node_03", END) # 正常边
2.5编译Graph
设置完成后,就可以编译Graph
编译Graph会需要执行一些操作
①检查孤立节点是否存在
②关于Graph结构的其他检查
为了编译Graph,我们运行以下代码块
# 定义Graph及其状态``builder = StateGraph(State)`` ``# 添加所有节点``builder.add_node("node_01", node_01)``builder.add_node("node_02",node_02)``builder.add_node("node_03",node_03)`` ``# 连接Graph节点与边``builder.add_edge(START,"node_01")# 正常边` `builder.add_conditional_edges("node_01", select_next_node)``# 连接graph节点与边``builder.add_edge("node_02", END)#正常边` `builder.add_edge("node_03", END)#正常边` ` ``# 编译graph``graph = builder.compile()
2.6Graph可视化
注意!
要试一下代码正常运行
请确保从Python笔记本运行
使用Python代码可视创建的Graph
from IPython.display import Image, display``# 可视化Graph``display(Image(graph.get_graph().draw_mermaid_png()))
从上图中,可以看出条件边用虚线,正常边用实线表示
2.7Graph调用
完成了Graph的编译
一切就绪
现在我们继续调用Graph,需要注意
①编译后的Graph在LangChain中实现了可运行协议,这使得能够在LangChain中处理其他链一样处理Graph
②要调用一个Graph,需要传入他的状态
③每一个节点都将接受当前状态并覆盖它
④执行持续进行到graph终止点,直到终止节点
⑤ invoke方法异步运行Graph,在移动到下一个节点之前,会等待每个节点完成
⑥Graph在所有节点覆盖返回最终的状态
graph.invoke({"graph_msg":"Hello, "})
以上就是关键的代码
恭喜你迈出成为AI Agent构建者的第一步
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。