在人工智能的世界里,情感识别早已不再是新鲜话题,但你有没有想过,AI不仅可以判断一个人的情感,还能通过多模态信息(比如文字、图像)进行深度推理,甚至回答“为什么会有这种情感”?最近的研究Emotion-LLaMA让这一切成为可能!这篇博客将带你了解Emotion-LLaMA如何结合指令微调技术和多模态数据,将情感识别推向一个全新的高度。
论文的创新点如下:
- 结合LLaMA与多模态情感分析:将强大的语言模型(LLaMA)与视觉信息结合,用于情感识别与推理。
- 指令微调框架:通过设计多种情感任务指令,增强模型的灵活性和泛化能力。
- 推理能力的提升:模型不仅可以识别情感,还能通过自然语言生成解释情感的原因。
论文:2024.11.02V2_Emotion-LLaMA: Multimodal Emotion Recognition and Reasoning with Instruction Tuning
论文地址:https://arxiv.org/pdf/2406.11161
代码地址:https://github.com/ZebangCheng/Emotion-LLaMA
DEMO:https://huggingface.co/spaces/ZebangCheng/Emotion-LLaMA
研究背景和贡献
情感识别是人工智能的重要任务之一,广泛应用于人机交互、心理健康分析和社会媒体分析等领域。然而,传统的情感识别任务存在以下问题:
单模态局限性:仅利用文本、图像或语音中的单一模态信息,可能导致对情感的理解不准确。
缺乏推理能力:模型通常只能分类情感状态,而无法解释或推理出情感的原因或细节。
指令化能力不足:现有模型难以通过自然语言指令灵活调整任务目标或回答复杂的情感推理问题。
Emotion-LLaMA 提出了一个多模态情感识别与推理框架,通过指令微调的方法,让模型能够高效地完成以下任务:
多模态情感理解:结合文本和视觉信息,全面捕捉情感线索。
情感推理:不仅识别情感,还能通过回答问题推理出情感背后的原因。
任务通用性:通过指令微调使模型适应各种情感任务(分类、生成、推理等)。
主要方法
论文的方法框架由以下关键部分构成:
2.1. 多模态架构
基于LLaMA的大语言模型(LLM):利用LLaMA模型的强大语言生成能力,处理情感相关的文本和指令任务。
视觉处理模块:结合视觉编码器(如CLIP或ViT),将图像嵌入信息传递给语言模型,完成多模态融合。
多模态交互:通过融合策略(如Cross-Attention或Late Fusion)实现文本和图像信息的协同处理。
2.2. 指令微调
通过大规模的指令数据(Instruction Data)微调模型,训练模型在特定情境下按照指令完成多种情感任务。
指令数据设计:
情感分类指令:如“根据图像和文字描述判断情感状态。”
推理指令:如“推测图中人物悲伤的原因,并提供解释。”
生成指令:如“描述图中情景所传递的情感和原因。”
训练数据来源:
人工标注情感数据集:如Visual Sentiment Analysis (VSA)和情感分析对话数据。
生成数据:利用规则或预训练模型生成更多指令数据。
2.3. 损失函数
结合分类和生成任务,设计多任务损失函数:
分类损失:针对情感分类任务,使用交叉熵损失。
生成损失:针对开放式回答,使用语言模型的生成损失(如GPT的最大似然估计)。
实验
3.1.数据集
多模态情感数据集:实验使用了多个公开数据集,包括文本、图像和多模态数据。
任务场景:涵盖了情感分类、情感推理和开放式生成任务。
3.2. 评估指标
分类任务:准确率(Accuracy)、宏平均F1分数。
推理任务:BLEU、ROUGE等生成评估指标。
多模态任务:单模态与多模态模型的性能对比。
3.3. 结果分析
多模态优势:相比单模态模型,Emotion-LLaMA在多模态任务上显著提高了情感识别的准确性。
推理能力增强:通过指令微调,模型在情感推理任务上的表现优于传统模型。
通用性强:Emotion-LLaMA能灵活处理不同形式的情感任务,包括分类、推理和生成。
3.4. 消融实验
通过逐步移除指令微调、多模态交互模块等,证明每个模块对模型性能的提升是不可或缺的。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。