千万不要尝试 Qwen2.5-Max,你会因此忘掉 DeepSeek V3

就在 DeepSeek v3 发布一个月后,老牌霸主阿里云通义千问团队放出了 Qwen2.5 系列的最强旗舰模型——Qwen2.5-Max,在难以作弊的 Arena 榜单上,超越 DeepSeek V3

这里多扯一嘴,Arena 这个榜单可不是学术测试集,模型不仅无法提前知道题目,甚至参与测试的人员都无法提前知道在测的是哪个模型。

Arena 榜单采用匿名方式将大模型两两组队,交给用户进行盲测,用户根据真实对话体验对 模型能力进行投票。因此,Chatbot Arena LLM Leaderboard 成为业界公认的最公正、最权 威榜单之一,也是全球顶级大模型的最重要竞技场。

不止是 Arena 榜单,包括 LiveBench、LiveCodeBench、GPQA-Diamond 及 MMLU-Pro 在内的一众基准测试,Qwen2.5-Max 都全面的超越了 DeepSeek-V3。

好家伙,DeepSeek V3 的王座还没坐热乎呢,仅仅一个月就被通义的新旗舰端了吗??

我注意到,这两天咱们的各个 Family 群里也陆续有家人发现这个 Qwen2.5-Max 有点牛逼了——

就连外网都出现了大量百万阅读量的讨论帖:

还有老哥干脆跟 ChatGPT 去"Say Goodbye"了——

根据阿里云官方的说法,这个 Qwen2.5-Max 模型最牛逼的是在于数学和编程,还有一个不太常见的名词“硬提示(Hard Prompts)”——

这个硬提示是 Arena 中的一项能力测试,你可以简单理解成,考察模型对于一些模糊、抽象、开放、需要创造力的用户指令,是否能很好的处理。

比如 “写一首关于夏天的诗”,或者 “宇智波斑能打得过贝吉塔吗”,这种 case 就非常考验模型自身的知识储备、创造力(脑洞)甚至推理能力。

最近特别火的 DeepSeek 的一个回答——

满满的家国情怀。

同样的问题,我问了 Qwen2.5-Max——

好理科脑,又好奇地追问了第二伟大是什么:

一个预料之外的答案,Qwen2.5-Max 我愿称你为理科狂魔…

你俩真的是一个理科脑,一个文科脑,我好想给 Qwen 和 DeepSeek 磕 CP 啊

当然,在这种考察 AI 脑洞的问题上,主要考察的是提问者的脑洞。所以,你可以在评论区秀出你和 Qwen2.5-Max 的脑洞。

差点忘了给你们贴 Qwen2.5-Max 的传送门:

网页端:
https://chat.qwenlm.ai/

API 调用

在阿里云百炼平台上可以直接调用 API 服务

这里必须要提一嘴,打开官网后,你能看到下面这个“Artifacts”功能。如果你准备跑一些在线运行的编程类问题,一定要勾选这个。

要我说,这次 Qwen2.5-Max 能打败 DeepSeek-V3,不仅在于榜单和效果上全面超越,这个能实时渲染前端代码的 Artifacts 功能也是加了大分。

Qwen2.5-Max 强大的编程能力搭配上 Artifacts,玩法瞬间打开了,即使你完全不懂编程

比如你可以直接让 Qwen2.5-Max 给你在线写代码放烟花——

提示词:今年过年七彩祥云的烟花特别火,我想要一个电子版的七彩祥云烟花动画

这不妥妥的来自程序员的浪漫嘛,哪个女生不心动!

如果觉得放烟花不过瘾,想有更多参与感,你甚至可以让他为你做一个更浪漫的交互式艺术作品——

提示词:编写一个程序,生成一幅动态艺术画。画布上随机生成多个点,这些点会按照一定的规则移动(如随机游走、相互排斥、跟随鼠标等),并留下轨迹。最终生成一幅随时间变化的动态艺术作品。

你们注意看,我的鼠标移动到哪儿,这些五彩斑斓的小蝌蚪就跟到哪里,突然感受到了一股情绪价值…

我甚至隐隐的觉得,如果有一天 AI 足够强大,这类交互式的艺术作品可能演变为一种新的内容载体。

当然,上面这种轻应用只是好玩,实测让 Qwen2.5-Max 写功能性的应用也完全没问题。

比如让它生成一个记录 TODO 列表的小应用。

提示词:Help me create a to-do list app in JavaScript.

功能演示——

甚至你可以让他直接写一个国际象棋游戏——

提示词: 制作一个中国象棋游戏

这个提示词真的没法更简单了。

看下效果——

实测了一下,象棋规则完整的实现为了正确代码,一个双人对战象棋游戏就这样一次过了。

好了,你可以卸载掉电脑上的联众世界了。

大火的物理模拟实测

众所周知,前些天,推特上这条物理模拟的帖子引发了将近 400 万围观。我准备拿来测一下 Qwen2.5-Max。

提示词:写一个程序,展示一个球在旋转六边形里边弹跳。球应受重力和摩擦的影响,它必须实际上从旋转的墙壁上弹起

这道编程题的目标是,实现让一个球在旋转的六边形内弹跳,小球跳动的过程中要遵循重力和摩擦力的影响,是一个逼真的物理模拟 case。下面这个视频是网友跑的 o3-mini 和 DeepSeek R1 的表现:

我加测了一下 Qwen2.5-Max——

哈,竟然翻车了。

不过,在经过人工提醒和一次修正后,它成功了!

效果如下:

小球成功的 duangduang 弹跳、碰撞起来了。

我实测下来,写的应用项目越复杂,越需要优化提示词,并配合“人工反馈 + 抽卡大法”。这一点像文生图/文生视频赛道的特点了。

随着大模型编程能力提升和 Artifacts 渲染边界扩展,可能“人人都是程序员”的时代不远了。

文学测试

虽然根据官方的宣传和实测体感,Qwen2.5-Max 的理科能力非常强。但当我顺手跑了一下文学题目后,发现它的回答同样兼具温度和智慧。

比如你们看这个——

有被感动到!它居然在写信之前,告诉我们“每个人都有选择自己生活的权利,包括生育”。而且,整封信都在用温柔且开放的语气,最后还提出建议调整标题。

我只能说:真的不是人,它一点也不刻薄!

压轴:AI 专用变态测试系列

当然,文科理科并不能代表 AI 能力的全部。

既然你是个 AI,那一定少不了《AI 专用变态测试系列》题目。

比如这道 Family 群里一位家人提出的倒装句测试题,已经难崩了包括 DeepSeek、Gemini 等在内的一众 AI——

我丢给 Qwen2.5-Max 后——

竟然真做对了!

这个还是蛮神奇的。虽然不是每句话的倒装都能对,但我发现 Qwen2.5-Max 这方面的“抗压能力”确实更胜一筹。

你如果质疑它看不懂倒装句,还会收获一条充满情绪价值的回答——

最难的草莓测试

写本文的时候,咱们刚好推送了 Gemini 2.0 全家桶发布的文章,评论区逮到一个评论 ⬇️

好啊,两年过去了,草莓测试还是这么难吗?

刚刚发布的 Gemini 2.0 Pro 在这道题上也是翻车了——

草莓这道题,就好像大模型头上的一个痦子,那么小,又那么碍眼。

虽说我三岁的小侄子都能数对,但是对于 2 岁(从 ChatGPT22 年 11 月算起)的大模型来说还是很难。

有专业的粉丝指出,带反思的推理模型才能解的好。

但我顺手丢给 Qwen2.5-Max 后——

竟然对了!

但要注意,我实测下来发现,不是每个单词都能这样一句话做对。但是,如果你在提示词后面加一句“一个一个的数”,Qwen2.5-Max 数字母会非常稳。比如这道题——

但我发现,这个提示词技巧,对大部分其他国产模型是不生效的,不得不说 Qwen2.5-Max 的指令遵循和综合能力确实强,大家可以实测一下。

结语

在对 Qwen2.5-Max 深度评测后,我想到了一句话——

有人逐日,有人摘星。

DeepSeek V3 的发布和爆火,让我们看到了 MoE 模型的潜力,让世界看到中国 AI 的锋芒。

探索 AGI 的路上并不孤单,DeepSeek 和 Qwen 都是中国 AI 大模型的代表力量,当然还有很多优秀国产代表。

说个冷知识,DeepSeek 将 R1 蒸馏出的 6 个小尺寸模型,有 4 个用的是 Qwen 开源模型,李飞飞最新发布的 S1,也是用 Qwen2.5-32B 作为基座模型。

Qwen 在研发超大规模的 MoE 模型上一直在持续努力,2024 年 6 月 Qwen 就开源过一个 57B 的 MoE 模型,这次使用超过 20 万亿 token 的预训练数据及精心设计的后训练方案进行训练,祭出了 Qwen2.5-Max 这个新的王炸。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### LangGraph Qwen 使用指南 LangGraph 是一种用于构建复杂智能体应用程序的强大工具,能够简化自然语言处理(NLP)工作流中的多个环节[^1]。对于希望利用 LangGraph 和 Qwen 进行开发的技术人员来说,理解如何配置环境以及创建基本的应用程序至关重要。 #### 创建基于Qwen模型的代理 为了启动并运行一个简单的 LangGraph 应用程序,首先需要安装必要的库: ```bash pip install langchain qwen ``` 接着,在 Python 脚本中导入所需的模块,并初始化带有 Qwen 大规模语言模型(LLM)的服务实例: ```python from langchain_core.messages import HumanMessage from langgraph.prebuilt import create_react_agent import qwen # 导入qwen包 llm = qwen.Qwen() # 初始化Qwen LLM服务 tools = [...] # 配置所需工具列表 system_message = "You are a helpful assistant." # 设置系统消息 agent_executor = create_react_agent(llm, tools, messages_modifier=system_message) ``` 上述代码片段展示了如何通过 `create_react_agent` 函数快速搭建起一个具备反应能力的代理对象[^2]。此函数接收三个参数:大规模语言模型(`llm`)、一系列辅助功能(`tools`)及可选的消息修饰器(`messages_modifier`)用来定制化交互行为模式。 #### 执行对话循环 一旦成功建立了代理实体,则可以通过向其发送人类输入信息来进行互动交流: ```python human_input = HumanMessage(content="What is the weather like today?") response = agent_executor.run([human_input]) print(response.content) ``` 这段脚本模拟了一次完整的会话过程——从用户提问到最后接收到由 AI 自动生成的回答文本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值