刚刚,AI大牛吴恩达官宣创业公司新成果——Agentic Object Detection(Agent目标检测)。
无需标注训练数据,模型仅通过推理就能在图片中定位指定物体。
举个栗子,在一张长满草莓的图片中,提示词为“未成熟的草莓”,AI模型立马分分钟帮你找出。
据吴恩达介绍,以前视觉AI要想识别物体,需要在大量标注数据上训练,而现在AI只需瞥一眼图片,短暂思考后(当前约20~30s)就能立刻输出正确内容。
而通过推理实现零样本标记的方法也令一众网友感到兴奋,未来应用潜力巨大。
目前这个AI工具人人免费可玩(也为开发者提供了API),仅过去几小时,一大波网友试玩已新鲜出炉~
网友疯狂试玩ing
还是先来看下吴恩达的详细介绍。
在他看来,Agentic Object Detection改变了目标检测的工作流程。
传统视觉AI的目标检测,通常需要绘制大量边框来标注数据,然后在神经网络上训练。
而现在,新的AI系统将耗时耗力的标注过程省略了。它将感知规划行动等都糅合在一起,通过调用一系列工具,以及对任务长度进行推理,最终实现了零样本标记输入输出。
按他的说法,这就好比“睁眼版”o1和DeepSeek R1,看一眼,然后立即思考作答。
介绍过程中,除了一开始提到的草莓识别,他还展示了其他几个demo(请大家来找茬doge)。
planes with two engines(带两个引擎的飞机)
再比如在超市货架上找出某品牌的麦片。
Kellogg’s branded cerea
当然更实用的场景是,假如在家里翻箱倒柜找不着东西了,召唤它来帮忙(妈妈:别整天妈妈妈)。
除此之外,网友们也开始集体交作业,整体看下来大部分都成功了。
简单的有,找出板球运动中的击球手(batsman)。
或者检测出特定程序项目。
再比如找出航拍视角下的荒漠绿植。
当然,还有类似下面这样的日常生活。AI成功找到了一大盘食物中的寿司,不过在找货架上的汽水时,网友反馈只有详细到芬达这个品牌名才有可能成功,单纯提示“汽水”nonono。
更难的有,分别识别出美式足球中的攻守两方队员(上下验证能对得上)。
甚至也能快速找出非常迷你的飞镖。
不过,也有网友分享了少部分翻车案例。
同一张图,当网友试图找出戴帽子的人,AI明显漏了,一眼就能看到23号队员。
而且也无法识别图中的矩形。(地面,看看我)
经网友总结,显然Agentic Object Detection对一些常见问题(如遮挡、光线过曝等)还无法良好适应。
正如我们前面提到的草莓,有火眼金睛的网友发现,AI误将一个光线不佳的成熟草莓识别为“未成熟”。
不过吴恩达也早已提到,目前这个还只是初步尝试,检测质量、回答速度等后续还会进行优化。
出自吴恩达第二个创业项目
众所周知,吴恩达从2017年离开百度后(百度前首席科学家)便投身AI创业。
目前已知的人工智能项目有3个。
2017年6月,他官宣了第一个创业项目Deeplearning.ai,主要和教育相关(他目前还是斯坦福大学CS客座教授)。
这是一个AI在线教育平台,通过提供深度学习课程和资源,帮助人们学习AI技术。
在这之后,他又推出了第二个创业项目Landing.ai,专注于帮助企业实现人工智能转型。
从当时的介绍来看,其目标是通过AI技术提升企业效率,解决制造业中的痛点问题。例如提高生产效率、优化供应链管理、减少浪费等。
后来Landing.ai还和富士康等企业建立了战略合作关系,共同开发AI技术、人才和系统。
而这一次的Agentic Object Detection,从官宣视频来看即是出自该项目。
这也透露了,这一新工具大概率也是面向B端应用。
也几乎是同时,他在2018年成立了第三个创业项目AI Fund,显然这是一家专注于投资人工智能初创企业的投资基金。
当时资金规模达到1.75亿美元,投资者包括NEA(New Enterprise Associates)、红杉和软银等一众知名机构。
而近来,他更是对Agent智能体押下重注。
早在去年年初,他曾通过Deeplearning.ai平台预言:
超越下一代基础模型,Agent工作流将推动AI巨大进步。
当时他就提到,就像大语言模型(LLMs)在零样本模式下工作(提示模型逐个生成最终输出token,而不修改其工作),Agent在执行一系列步骤(如规划、执行、反思等)后可能比单次产生更好的效果。
现在,是时候逐步检验一系列新成果了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。