本地私有化部署 DeepSeek & Dify ,告别“服务器繁忙,请稍后再试”

前言

DeepSeek 最近实在太火爆了,导致官网对话访问经常提示“服务器繁忙,请稍后再试”。 如下图所示:

DeepSeek访问问题

关于什么是DeepSeek这里就不科普了,自己上网随便查一下就知道了。

DeepSeek

官网:https://www.deepseek.com/

目前DeepSeek最大的问题是访问流量太大,导致用户体验不好,它的深度思考模型和联网能力没有充分发挥出来,不过我相信后续加大投入,这类问题应该能得到缓解。

本文主要面向想在本地部署私有模型的开发同学,打造专属私人AI助手。

前置准备

硬件环境

  • MacBook Pro(推荐)

  • CPU >= 2 Core

  • 内存 >=16GB (推荐)

笔者的电脑配置:

电脑配置

软件环境

  • Docker

  • Docker Compose

  • Ollama

  • Dify 社区版

  • ChatBox

注:这里只演示在MacBook的部署过程,Windows和Linux的同学请自行实践。

安装Ollama & 加载模型

什么是Ollama?

Ollama 是一款跨平台的大模型管理客户端(MacOS、Windows、Linux),旨在无缝部署大型语言模型 (LLM),例如 DeepSeek、Llama、Mistral 等。Ollama 提供大模型一键部署,所有使用数据均会保存在本地机器内,提供全方面的数据隐私和安全性。

Ollama 下载页面

官网:https://ollama.com/

下载&加载本地模型

下载安装完ollama后,通过命令行可以查看对应的版本,并可以开始部署你想要的模型,这里选择的是deepseek-r1(默认是7b)。

通过ollama运行DeepSeek R1模型

deepseek-r1 模型版本

https://ollama.com/library/deepseek-r1

ollama run deepseek-r1

安装交互式UI:ChatBox

什么是ChatBox?

Chatbox AI 是一款 AI 客户端应用和智能助手,支持众多先进的 AI 模型和 API,可在 Windows、MacOS、Android、iOS、Linux 和网页版上使用。

https://chatboxai.app/zh

chatbox 设置

  • 选择模型提供方:OLLAMA API

  • 填入API域名:http://127.0.0.1:11434

  • 选择模型:deepseek-r1:latest

验证本地模型对话

使用deepseek-r1对话结果

至此你已经可以通过chatbox来跟deepseek对话, 如果你只是想体验DeepSeek的功能, 下面关于Dify 大模型服务搭建可以略过。

Dify 搭建个人知识库

什么是Dify?

Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。

Docker Compose部署

git clone https://github.com/langgenius/dify.git   cd dify/docker   cp .env.example .env

参考Docker Compose部署
https://docs.dify.ai/zh-hans/getting-started/install-self-hosted/docker-compose

启动Docker容器

docker compose up -d # 如果版本是Docker Compose V1,使用命令:docker-compose up -d

假设遇到以下问题,可以在前面我们安装的Docker Desktop设置里面配置镜像:

镜像失效问题

Docker Engine 配置

增加代理镜像

{     "builder": {       "gc": {         "defaultKeepStorage": "20GB",         "enabled": true       }     },     "experimental": false,     "registry-mirrors": [       "https://registry.dockermirror.com",       "https://docker-0.unsee.tech",       "https://docker.1panel.live",       "https://docker.imgdb.de",       "https://docker.m.daocloud.io",       "https://docker.tbedu.top",       "https://image.cloudlayer.icu",       "https://docker.melikeme.cn",       "https://cr.laoyou.ip-ddns.com",       "https://dockerpull.cn",       "https://hub.fast360.xyz",       "https://docker.hlmirror.com"     ]   }

国内代理经常失效或访问超时,这里可以多尝试几次,或者配置新的代理镜像地址。

参考:目前国内可用Docker镜像源汇总(https://www.coderjia.cn/archives/dba3f94c-a021-468a-8ac6-e840f85867ea)

镜像容器启动成功如下所示:

docker容器启动成功截图

Dify 平台添加Ollama模型

1、浏览器访问http://localhost/(默认 80 端口),进入Dify。

2、首次进入初始化设置账号密码

3、点击 Dify 平台右上角头像-> 设置 -> 模型供应商,选择Ollama,点击“添加模型

添加 Ollama

  • 模型名称:deepseek-r1

  • 基础URL:http://host.docker.internal:11434

Ollama 模型

Dify 创建应用

Dify 创建聊天助手

Dify支持聊天助手、Agent、文本生成等基础应用,还支持进阶应用Chatflow和工作流。这里我们先简单尝试创建聊天助手,填入基本信息,点击“创建”即可。

Dify 创建知识库

主页选择知识库 -> 创建知识库 -> 上传知识,搭建属于你自己的知识库。

Dify 创建知识库

引用知识库

AI应用引用知识库

至此,基于Dify搭建个人知识库已完成, 如此一来模型可以基于知识库输出更精确的的问答。

写在最后

本文实践了如何通过Ollama 本地部署DeepSeek R1 模型,并且尝试通过Dify 平台来创建个人知识库,进而搭建专属私人的AI 助手。笔者在实践的过程中也收获良多,打开了自己尝试AI工具的思路。

DeepSeek 的爆火估计会让全球科技巨头重新审视“大力(堆芯片,高成本)出奇迹”的问题,一家名不见经传的小公司为什么能够突破创新,而且诞生在中国,难道我们已经摆脱“追随者”的身份了?我相信这只是开始,AI军备竞赛已经开始打响,作为普通人无法避开科技浪潮,如何不让自己随波逐流,或许我们需要躬身入局去体验,思考和探索。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值