风电轴承故障诊断 | 基于多源信息融合和图神经网络CVC-Net的智能诊断

本期推文的内容概要

本期推文针对风力发电机轴承故障诊断中单一传感器信号易受噪声干扰、难以捕捉复杂故障特征的问题,提出了一种基于多源信息融合和图神经网络CVC-Net的智能诊断框架。该框架将来自不同输入的特征向量进行组合和集成,形成全局特征向量,从而能够对滚动轴承故障进行准确分类。详尽的实验验证了所提出的框架在利用 AVS 数据检测不同类型故障方面的有效性。研究目标是通过融合声学(Acoustic)和振动(Vibration)信号(AVS),结合自适应图结构建模与深度学习技术,提升故障检测的准确性和鲁棒性。

问题的背景

由于工业技术的不断发展和日益复杂,实现仅基于振动信号的全面故障诊断具有挑战性。这归因于各种外部因素(如噪音、环境干扰等)和轴承内部错综复杂的故障机制。为了提高故障诊断的准确性和可靠性,必须采用结合声学和振动信号 (AVS) 进行多源信息融合分析的新兴趋势。传统方法依赖单一振动信号,但面临两大难题:

  • 噪声干扰大:工业环境复杂,信号易受干扰,漏检率高。

  • 耦合故障难识别:多故障叠加时,单一信号难以捕捉全貌,误诊频发。

方法的概述

图神经网络GNN 建立在利用边缘连接和邻域关系捕获图中每个节点的唯一属性的基本原则之上。与将节点视为独立实体并忽略拓扑信息的传统深度学习方法不同,GNN 擅长捕获节点之间的复杂关系。GNN 具有高度通用性,可以处理节点、边缘和图形级别的任务,从而产生各种图形学习算法。为了解决传统训练方法的局限性,已经提出了利用采样技术的创新方法,从而取得了重大进步。

在图 3 中,展示了一个两层 GCN 模型,展示了每个卷积层的计算流程,该流程分为三个不同的阶段:采样、聚合和组合 。在采样阶段,根据特定标准从整个图形中选择一个节点子集,从而允许后续计算集中在一组减少的节点上。聚合作涉及逐步组合给定节点的所有采样相邻节点的特征。最后,在组合阶段,将从聚合阶段得到的域特征与来自上层的节点特征合并,从而促进当前层中节点表示的更新。(一)数据级融合相关方差贡献算法

由于环境噪声和传感器故障的频率特性等因素,依赖于相关函数的数据级融合方法在准确确定权重的调整和分配方面面临挑战。因此,信息丢失成为一个问题。为了解决这些问题,我们提出了一种基于相关方差贡献算法的新型数据融合方法,如 该方法利用不同传感器信号之间的冗余性、相关性和互补性,有效地从每个传感器采集的信号中提取基本特征信息。

此外,它还确保每个传感器的动态聚变系数保持一致的能级。通过利用相关方差贡献算法,我们的方法根据信号重要性分配融合系数,从而实现多源信息的动态融合,同时减轻特征信息的损失。

在 CVC 算法中,在获取总相关能量,在第 i 个传感器和所有剩余的传感器信号之间通过方程得出一个归一化方案,并表示为:

这确保了m类似的传感器。这里表示第 i 个传感器收集的数据信号序列,在一段时间内以特定采样频率采集。需要强调的是,采样频率T类似的传感器必须在整个归一化过程中保持一致。

根据得到的融合系数,𝑚传感器信号被融合成一个信号。融合信号的第 q 个数据点的值是:

(二)自适应收敛可视图神经网络

提出了一种自适应收敛可视图算法 (AcvGraph),以解决现有算法中将收集的信号数据映射到图数据中存在的映射灵活性有限和映射效率低的问题。该算法旨在尽可能多地保留原始信号中的特征信息,同时提高图数据的映射效率。由于数据采集期间故障信号中通常观察到的高采样频率,因此 AVS 数据表现出高维数。为了降低计算复杂度并提高模型的泛化能力,采用时间窗截断技术来聚合截断的子样本。更具体地说,我们生成 subsample-set𝑄对于原始 AVS 数据,通过应用长度为𝑑:

随后,一个至关重要的步骤是将最大值收敛作应用于子样本集𝑄。选择此作是因为它能够捕获信号峰值,这对于精确的故障分类至关重要。此外,最大值聚合器对特定类型的噪声表现出稳健性,因为即使在存在噪声的情况下,它仍然可以识别信号峰值。应用最大值聚合作后获得的子样本集可以表示为:

特征序列可以通过以下方式获得:

表示步长为 1 且卷积核长度为 1 的一维卷积层超参数𝑟用于调节采样点之间的间距,从而能够从 AVS 数据中提取不同级别的局部信息。通过调整𝑟,可以捕获数据中的各种模式和特征,从而作为提取局部信息的机制。为了提高精度和性能,同时减少环境噪声的影响,ReLU 函数被用作非线性激活函数来处理生成的特征序列:

最后,将一维卷积应用于噪声过滤后的特征序列,然后沿对角平行方向排列以构造一个𝑛×𝑛大小邻域矩阵使用加权连接,从而实现将给定的 AVS 数据映射到

通过使用 AcvGraph 算法将 AVS 数据映射到图数据,并将其与标准 GNN 分类模型集成,可以构建用于机械设备故障诊断和分类的图神经网络框架。为了解决计算复杂性和内存需求,该框架整合了 DiffPool,这是一个可微分的图形池模块。DiffPool 支持节点集群,同时保留重要的节点信息,从而为后续 GNN 层提供更粗糙的输入。这种分层图形表示形式与不同的图形神经网络架构相结合,可实现端到端集成。DiffPool 模块的关键方面是它利用 GNN 模型输出来学习集群分配矩阵。每个 GNN 模块都接收来自前一层的节点嵌入,从而实现特征聚合并为后续层生成新的节点嵌入。结果,输入图变得粗糙,导致 AVS 的最终特征向量表示为:

DiffPool 不仅提取了有利于图分类的节点嵌入,还促进了分层池化,从而提高了模型的训练性能。

(三)多源多层次融合智能诊断框架

提出了 CVC-Net,这是一个先进的智能诊断框架,由两个关键组件组成:基于相关方差贡献的数据级融合算法和自适应收敛可视图神经网络。该框架的目标是通过集成多个数据源来实现准确的故障诊断。图 4 提供了该框架的概述。

主要有以下四个主要步骤:

第 1 步:从在不同条件下运行的机械设备中采集多源和多传感器信号,包括声学和振动信号。

Step2: 使用 CVC 数据级融合算法,对获取的多传感器振动信号进行处理,计算动态融合系数。这些系数可以生成熔断振动信号,从而提高诊断信息的全面性。

第 3 步:使用时间窗口划分和最大值聚合作对原始 AVS 和融合样本进行子采样。然后将这些样本送入 CVC-Net。增强的 DiffPool 模块对通过 AcvGraph 方法获得的图执行特征提取和下采样,为原始 AVS 和融合样本生成特征向量。这些向量被连接、融合并通过一个全连接层进行故障类型分类,从而为不同的故障类型生成标签。

Step4:最后,所提出的框架提供了智能诊断结果,有效地证明了所提方法的优越性。

实验验证

(一)数字仿真信号

生成仿真信号模拟滚动轴承中的早期单一故障。该信号表现系统组件的特性,以固有频率为中心频率,故障特性频率为优势侧频段。该信号包括两个主要部分:故障周期性冲击响应分量,表示为和高斯噪声分量,表示为具体来说,采用仿真技术生成轴承内圈n(t)故障仿真信号,公式如下:

图 5 显示了双通道振动信号的原始波形,以及归一化功率谱 (NPS) 表示。为了更直观地比较融合前后的 NPS,对功率谱应用了阈值分割技术。通过将低于阈值的能量设置为零,这种分段有助于分离背景噪声和谐波分量,从而提高故障特征分量的可见性。

结果表明,由于信号分量的幅度和能量,数字信号的NPS呈现不同的频率。

利用 CVC 和 CF 算法将两个仿真数字信号融合在一起,融合信号的放大局部 NPS 如图 6 所示。

从图中可以明显看出,CVC 算法有效地合并了振动信号,并结合了各个传感器信号中存在的所有频率分量。这种全面的表示准确地描述了模拟内圈故障的整体振动特性。此外,通过 CVC 获得的融合信号表现出更高的峰值幅度,表明信号能量更强。相反,由于 CF 融合信号的固有频率有限,因此无法达到可比的效果。在融合过程中,CVC 算法会为每个通道信号动态分配融合系数,从而保证各个测量点的均衡贡献。这种动态分配在各个通道之间保持相等的能量水平,并实现更稳健的融合过程。CVC 的适应性和灵活性是显而易见的,因为它会根据数据特性和动态进行权衡和调整。

图 7 展示了 CVC 算法为各种通道分配的动态融合系数,进一步强调了它对不同信号条件的适应性。

(二)实验案例

实验平台的结构和系统框图如图 8 和图 9 所示。

在本研究中,N311EM 和 NJ311EM 圆柱滚子轴承用于实验研究。两个轴承的尺寸相同,仅在各自套圈的可拆卸性上有所不同。N311EM 轴承具有可拆卸的外圈,而 NJ311EM 轴承具有可拆卸的内圈。这种差异允许对特定故障进行模拟。因此,内圈故障实验使用 NJ311EM 轴承进行,而外圈和滚动体故障实验使用 N311EM 轴承。此外,通过组合两种类型的故障承载,创建了四种复合故障条件。在实验阶段,以 25.6 kHz 的采样频率收集故障轴承运行期间生成的 AVS 数据。

CVC 数据级融合方法的性能验证:使用在五种不同转速下收集的 AVS 数据作为 CVC-Net 框架中故障分类实验的输入,评估了 CVC 数据级融合方法的优势。在实验过程中,观察到振动信号的分类精度超过了原始 AVS 数据集中声学信号样本的分类精度。此外,两种声学信号具有不同的分类精度,而振动信号之间的分类精度差异最小。这种差异可归因于双馈风力涡轮机在运行期间的噪声水平变化,这会显著影响声学传感器。随着转速的增加,噪声逐渐增强,导致分类精度下降。幸运的是,我们发现 CVC 方法在五种不同的转速条件下将熔融振动样品的分类精度显著提高了约 4%。相比之下,CF 方法对熔融振动样品的分类精度的改进不太显著。具体结果如图 12 所示。

为了探究不同传感器采集的数据之间的特征差异,将两个转速为 700r 的原始振动信号和融合振动信号输入到 CVC-Net 模型中。 如图 13 所示,生成的混淆矩阵表现出最高的分类准确性。在此矩阵中,水平坐标和垂直坐标分别表示预测标签和实际标签。数字 1-8 对应于轴承故障的类型。具体来说,1 表示 NC,8 表示 O-I-B-CF。如图 13 所示,与传感器 2 相比,传感器 1 表现出更强的 OF 识别能力。

相比之下,传感器 1 对 I-BF 的复合故障表现出较低的敏感性,而传感器 2 在识别此类故障方面表现出更高的效率。此外,这两个传感器在 O-I-B-CF 故障场景中的检测性能都不足。然而,使用 CVC 算法融合后获得的振动数据利用了两个传感器数据集之间的相关性和互补性,从而显著提高了故障检测精度。这些发现突出了不同传感器的故障检测性能截然不同。通过分析混淆矩阵,我们可以更深入地了解不同传感器对特定故障类型的灵敏度和有效性。

总结与思考

本期推文介绍了一种智能诊断框架 CVC-Net,旨在提高滚动轴承状态监测和故障诊断的精度和可靠性。该框架采用结合 AVS 数据的多级融合方法,并利用图神经网络。

该研究提出了基于 CVC 的数据层融合方法,动态集成多个传感器信号,在诊断滚动轴承故障方面表现出优异的性能。此外,采用 AcvGraph 方法将时间序列数据映射到最佳图形结构中,以提高计算速度和识别性能。该框架通过连接和融合来自不同输入的特征向量,实现了滚动轴承故障的准确分类。

实验结果表明,所提出的智能诊断框架在滚动轴承故障诊断中的出色性能,与传统方法相比,其准确性和可靠性更高。该框架通过集成 AVS 数据和图神经网络来融合多源信息,为该领域做出了重大贡献。然而,必须承认这项研究的局限性,该研究主要关注 AVS 数据和图形神经网络,而忽视了对其他潜在数据源和模型的考虑。后续的研究工作应探索替代数据源和模型,以增强该框架的适用性,并进一步提升滚动轴承智能诊断的性能。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值