AI智能体技术发展太快,各种搭建和使用智能体的平台也是层出不穷。
有很多平台都配备了一大堆实用的工具和框架,让每个人都可以轻轻松松地打造出厉害的智能体。
今天给大家介绍3个最主流的智能体平台:
1. Dify
Dify是一个开源的大语言模型应用开发平台,支持GPT、Mistral、Llama3等数百种模型。平台提供声明式开发环境(通过YAML定义应用)、模块化设计、LLMOps功能(监控和优化应用性能)以及私有化部署能力。其定位是简化复杂AI应用的开发流程,特别适合需要深度定制化或企业级部署的场景。
优势:
• 国际化支持:主要面向海外市场,集成多语言模型和国际化工具。
• 灵活性与扩展性:支持自托管和云服务,可无缝集成企业现有系统,满足数据安全和合规需求。
• 活跃开发者生态:开源社区提供丰富的模板和协作机会,支持快速迭代创新(如Workflow可视化流程)。
• 多模型对比:支持同时测试不同模型(如GPT-4与Claude3)的响应,优化任务适配性。
劣势:
• 学习门槛较高:模型集成和配置需要技术背景,对新手不友好。
• 国内生态较弱:与Coze相比,国内市场份额和插件支持有限。
适用场景:
企业级LLM基础设施搭建、私有化部署、开发者主导的复杂AI应用开发。
2. Coze
Coze是字节跳动推出的低门槛智能体开发平台,以自然对话体验为特色,支持语音识别/生成、丰富的插件生态,并可通过Web SDK嵌入网页。其核心用户群体是C端用户和轻量级应用开发者。
优势:
• 极致用户体验:界面简洁,对话流畅,语音交互精准,适合非技术用户快速上手。
• 插件与生态优势:内置多领域插件(如电商、客服),依托字节技术资源,国内生态支持强大。
• 免费GPT-4接入:国际版支持免费使用GPT-4模型,功能成熟度高。
劣势:
• 定制化不足:主要面向标准化Bot开发,复杂任务扩展性弱于Dify和FastGPT,且仅支持云端部署。
适用场景:
智能客服、语音助手、社交媒体聊天机器人等注重交互体验的C端应用。
3. FastGPT
FastGPT专注于知识问答类Agent开发,基于RAG技术优化知识库检索,适合企业级深度定制,但生态主要聚焦国内市场。
优势:
• 垂直领域优势:在知识库构建和复杂问答场景表现突出,支持高度定制化功能。
• 开源与可扩展性:吸引开发者贡献,适合需要自主优化的团队。
劣势:
• 部署复杂:需要技术背景配置,对初学者不友好。
• 生态局限:国际化支持较弱,插件和模型集成选项少于Dify和Coze。
适用场景:
企业知识库管理、专业领域问答系统、需本地化部署的行业解决方案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。