车道识别准确率98%!V2X-LLM:实时多模态数据融合与协同决策框架

智能交通系统迎来突破性创新!威斯康星大学麦迪逊分校与德克萨斯A&M大学研究团队联合开发的V2X-LLM框架,首次将大型语言模型的强大推理能力与车联网技术完美结合。

这一框架通过四大核心功能——场景解释、数据描述、状态预测和导航建议,让车辆与基础设施之间的"对话"不再局限于简单数据交换,而是升级为富有情境理解的智能互动。实验结果显示,该技术在车道识别和信号相位理解方面准确率高达98%,为城市交通管理带来革命性变革。

想象一下,当车辆能理解复杂的交通场景、预测信号灯变化并实时提供最优路线建议,城市出行将变得多么高效与安全!V2X-LLM不仅是一项技术突破,更代表着人工智能与智慧交通深度融合的未来方向。

img

随着联网自动驾驶汽车(CAVs)和车对万物通信(V2X)技术的快速发展,交通领域面临着管理海量异构数据的重大挑战。传统方法难以有效处理高频、多模态且具有时空依赖性的V2X数据流,无法提供全面的态势感知和实时决策支持。大型语言模型(LLMs)的引入为解决这些问题提供了突破性方案。

V2X-LLM框架首次将LLMs的强大能力应用于车联网走廊,通过其自注意力机制有效处理多模态数据,解释复杂交通场景,并提供结构化见解。LLMs独特的多任务处理能力和上下文推理优势使其能够无缝集成各种数据类型,从车载单元的基本安全消息到路侧单元的信号相位数据,实现近实时的交通状况估计。这种结合不仅增强了数据集成和实时决策支持,还提高了预测建模和系统可解释性,为智能交通系统的安全性、效率和可持续性带来显著提升,为未来自动驾驶生态系统的发展奠定了坚实基础。

本研究的主要贡献包括:

  • 引入V2X-LLM框架,利用LLMs改进智能走廊V2X通信和数据解释。

  • 设计并实现先进的数据管道系统,专为整合LLMs与V2X系统。

  • 实时数据分析和上下文理解,促进车联网走廊的无缝导航,从而改善整体出行体验。

  • 执行四项关键任务:场景解释(提供交通状况详细叙述)、V2X数据描述(提供车辆和基础设施状态精确描述)、状态预测(预测未来交通状态)和导航建议(提供优化路线指示)。这些任务共同实现增强交通管理和安全,通过全面实验结果证明了该框架在改进V2X集成和理解方面的有效性。

img

2.1. 框架结构

**V2X-LLM框架是一个结构化系统,旨在将联网车辆走廊的V2X数据与大型语言模型驱动的高级推理能力集成起来。**该架构由多个相互连接的层组成,每一层对于处理、解释和合成V2X信息以支持智能交通系统都至关重要。

如图1所示,初始层处理从数据管道系统获取的各种V2X数据输入,包括由麦迪逊市协调的信号相位计划设计,以及走廊上所有交叉口的历史和实时信号状态信息(SPaT数据)。此外,还纳入了MAP数据以描述交叉口的几何布局及车道级详细信息,而BSM数据则提供动态和静态车辆状态信息。

img▲图1| V2X-LLM框架

**接下来,场景编码阶段将原始V2X数据结构化并格式化为连贯标准化的表示形式。**这一过程涉及从数据管道中提取基本特征并将其编码为定义的类别,如走廊布局(描述CV走廊的空间配置)和车道几何(指定车道属性)。SPaT数据经过处理,提供实时信号状态评估和预测性见解,而CV运动状态则捕获车辆速度、位置和航向等动态元素。

提示生成阶段将编码后的V2X数据转换为结构化提示,作为LLM的输入。这一阶段包含几个关键组件,包括场景解释(生成交通环境的描述性叙述)和V2X数据描述(提供关于车辆和基础设施状态的详细见解)。此外,状态预测模块预测未来车辆状态并估计信号相位转换,支持主动交通管理。导航建议模块生成最佳路线和机动策略建议,辅助动态交通条件下的实时决策。

在框架核心,LLM处理这些结构化提示以生成有意义的输出。**系统产生两类主要响应:回答和推理。**回答组件针对从V2X数据派生的特定查询提供直接响应,确保及时且上下文感知的信息检索。相比之下,推理组件通过利用LLM推断模式、建立上下文关系和综合复杂见解的能力进行深入分析。这种双重处理能力增强了态势感知,并为利益相关者提供了对不断变化的交通状况的全面理解。

2.2. 场景编码

场景编码过程是V2X-LLM框架中的基本元素,负责综合和构建各种V2X数据源成一个连贯格式,使系统化分析和明智决策成为可能。这种转换通过提取器模块实现,该模块在数据管道内运行,设计用于系统性处理V2X消息。该模块从多个源提取基本数据属性并将其组织成结构化格式,便于与LLM推理模块无缝集成,用于高级交通分析和推断。

图2展示了原始V2X消息和编码后的CV走廊数据的示例数据格式。

img▲图2| 场景编码

场景编码包括几个关键组件:环境布局、车道几何、信号相位和时序、运动状态。

通过场景编码生成的结构化数据输出为提示生成奠定了基础,使LLM能够分析不断变化的交通状况,预测未来车辆状态,并生成导航建议。将原始V2X数据转换为结构化表示增强了复杂交通环境的可解释性,并支持V2X-LLM框架内的智能决策。

2.3. V2X-LLM的角色和上下文

V2X-LLM框架在联网自动驾驶生态系统中充当AI驱动的专家助手,促进CV与部署在城市主干道多个交叉口的RSUs之间的无缝V2X通信。V2X-LLM的主要目标是协调车辆运动,增强态势感知,并促进在复杂交通场景中高效安全的导航。

LLM角色被定义如下:你是联网自动驾驶系统的专家AI助手,实现联网车辆与位于多个交叉口的RSUs之间的V2X通信。你的角色包括协调联网车辆在城市主干道中的导航。

上下文信息同样包括:环境布局、车道几何、信号相位和时序、运动状态

框架功能的关键在于它使用的详细上下文数据。这包括关于走廊交叉口及其相关RSUs的关键空间布局信息,以及全面的车道几何数据。从MAP消息中提取的信息包括车道ID、信号组归属和其他相关特征,有助于理解交通模式并优化流量。此外,V2X-LLM还整合了信号相位和时序数据,以及动态车辆运动数据,以提供交通环境的整体视图。这些组件共同使系统能够管理和简化车辆运动,提高整体交通效率和安全性。

2.4. 提示词设计

根据功能的不同,作者设计了如下提示词

**场景解释:**场景解释提示旨在生成关于联网车辆经历的交通状况的详细叙述。它指导V2X-LLM分析多个数据元素,包括信号相位状态、车道配置和车辆运动模式,以构建交通环境的全面描述。该模板引导系统描述走廊布局,详细说明配备RSU的交叉口数量、方向对齐和空间分布。此外,它还提供关于车辆行程的见解,指定出发和到达位置、行驶路径、交叉口之间的距离和总行驶时间。

**V2X数据描述:**V2X数据描述提示结构化地提取和呈现V2X数据的关键方面,包括车道几何、信号相位状态和车辆运动属性。该提示引导V2X-LLM根据车道ID和交叉口位置确定和指定车辆位置,以及其速度和运动方向。此外,它还整合了信号相位和时序数据,这对评估车辆当前状态和可用机动选项至关重要。结构化提示确保交通状况得到精确表示,允许准确评估车辆在走廊中的位置。

**状态预测:**状态预测提示旨在使V2X-LLM能够基于历史和实时数据预测未来交通状态和车辆动态。结构化提示模板指导模型预测车辆在五秒窗口内的轨迹,并估计交叉口的信号相位转换。系统提供当前信号相位、剩余时间和预期下一相位的细分。这种预测能力有助于预测交通模式、识别拥堵点和优化信号时序策略,最终有助于改善交通流管理。

**导航建议:**导航建议提示旨在通过考虑交通状况、信号时序和车辆运动为联网车辆生成实时路线指示。该提示指导V2X-LLM评估车辆的当前车道、相关信号组和允许的机动操作,然后生成车道和交叉口转换的精确建议。系统还估计行程时间并建议最高效安全的路线。通过利用实时交通数据,这种结构化建议方法增强了车辆协调,并有助于高效城市导航。

img

3.1. 实验设置

本研究进行了一系列实地实验,这些实验在2023年4月至7月期间在美国麦迪逊市Park Street的车联网走廊上进行。这条连接University Avenue与麦迪逊市中心的主干道路共安装了15个路侧单元(RSUs)。在我们的实验中,选择了其中6个RSUs。我们主要进行实验的道路部分包括这6个RSUs,覆盖了Park Street约1.3英里长的路段。实验采用数据管道系统来检索和解码消息,确保高效的数据提取。为了与RSUs通信,在车辆上安装了配备全球导航卫星系统(GNSS)天线的Cohda MK6C车载单元(OBU)。此外,通过以太网连接的笔记本电脑用于接收从OBU传输的数据。

对于LLM推理模块,我们采用了ChatGPT-4,这是一个大型多模型,能够分析文本和图像输入并产生文本输出,用于在我们的场景中进行解释和推理。

img▲图3| 实验场景

3.2. 实验结果与讨论

场景解释实验:

场景解释任务的结果验证了V2X-LLM框架准确解释和描述CV走廊布局的能力。系统成功提取了关键空间细节,包括配备RSU的交叉口数量、它们的方向对齐以及它们之间的精确距离。实验的结构化输出在响应框中用黄色突出显示,遵循预定义的模板。图3提供了交叉口的可视化表示。系统识别了6个交叉口,均配备RSUs,沿南北方向运行,总走廊长度为1.08英里。此外,框架计算了连续交叉口之间的精确距离,如从Park St @ Dayton到Park St @ Regent为0.24英里,从Park St @ Regent到Park St @ Braxton为0.09英里,以及其他路段的类似测量。

除了提取空间属性外,V2X-LLM还建立了逻辑解释和推理过程。系统分析了交叉口间距如何影响车辆运动和行程时间,强调了其在信号相位协调和拥堵管理中的作用。通过集成BSM和SPaT数据,框架增强了其推理能力,使用实时数据评估车辆交互、优化信号时序并提高整体交通效率。

img▲图4| 场景解释实验

V2X数据描述实验:

V2X数据描述任务展示了V2X-LLM框架基于实时V2X数据准确确定车辆位置、运动特征和信号相位状态的能力。系统有效提取和解释了车辆的确切车道位置、速度、运动分类和对应的交通信号相位。如图4所示,实验确认在时间戳2023-07-04 10:48:50.95,车辆被识别位于"Park St @ Regent"交叉口的11号车道,以0.91英里/小时的速度行驶。该车道指定的运动是南向直行(SB-T),信号相位记录为"stop-And-Remain",在转换前剩余18.77秒。

对于这些结果的推理过程遵循结构化方法,整合BSM和SPaT数据以确定车辆位置和信号状态。如对话框中所述,系统首先匹配时间戳以确保与最相关数据集同步。使用BSM数据,它检索车辆的纬度和经度坐标,并通过地理空间映射将它们与最近的交叉口关联起来。通过计算车辆位置与预定义车道边界之间的测地距离,确定了特定车道识别,确定11号车道是最可能的位置。此外,系统基于一段时间内的位置变化计算车辆速度,验证了0.91英里/小时的运动。为了建立交通信号状态信息,处理SPaT数据以识别控制11号车道的信号组。系统检索当前信号相位,确认该车道处于"stop-And-Remain"相位,转换前剩余18.77秒。

通过整合空间和信号时序数据,V2X-LLM确保了准确的实时交通评估,支持改进车辆协调和增强交叉口安全性。

img

img▲图5| 数据描述实验

状态预测实验:

状态预测任务评估了V2X-LLM框架基于SPaT数据预测未来交通信号状态和相位转换的能力。实验专注于估计"Park St @ Dayton"交叉口的相位变化,如图5所示。系统预测了4号车道(NB-L)、6号车道(NB-T)和11号车道(SB-L)的转换,每个车道分配给不同的信号组。结果表明,V2X-LLM有效预测了相位转换和剩余时间,如从"stop-And-Remain"转换到"protected-Movement-Allowed",然后是"permissive-Movement-Allowed",确保与标准交通信号周期准确同步。

对话框详细说明了系统在多个时间戳的信号相位估计。在10:48:39.99,系统预测4号车道将在"stop-And-Remain"相位保持3.38秒,然后在10:48:42.79转换为"protected-Movement-Allowed"。类似地,在10:48:43.49,预计4号车道将在5.29秒后再次转换,在10:48:48.78进入"permissive-Movement-Allowed"。在10:48:49.44,系统估计4号车道将进入"protected-clearance"相位3.38秒,然后在10:48:52.82回到"stop-And-Remain"。这些预测验证了系统跟踪动态交通信号行为并提供实时见解以优化车辆运动和减少拥堵的能力。

通过将预测的转换与实时SPaT更新对齐,V2X-LLM框架增强了信号协调和车辆运动优化。系统区分多个车道和运动的转换的能力进一步细化了其交通控制预测。例如,当4号车道经历多个运动状态转换时,其他车道可能保持"protected-Movement-Allowed"状态较长时间。这种区分突显了框架适应复杂交叉口控制策略的能力。此外,详细的时序细分使精确的车辆协调成为可能,使联网车辆能够预测即将到来的相位变化并相应调整速度。准确预测相位转换和清空间隔有助于减少不必要的停车、减少拥堵并提高整体交通效率。通过利用实时SPaT数据和历史相位分析,V2X-LLM为动态和自适应交通信号控制做出贡献,加强了其在智能城市移动解决方案中的潜力。

导航建议实验:

img

img▲图6| 状态预测实验

导航建议实验:

导航建议任务评估了V2X-LLM框架为穿越联网城市走廊的车辆生成结构化实时路线指导的能力。系统整合了车道转换逻辑、信号相位遵从和估计行程时间,以优化车辆运动,同时确保遵守交通法规。图6展示了车辆从Park St @ Dayton到Park St @ Fish Hatchery的导航建议,详细说明了每个车道转换和相应的信号相位交互。建议基于实时SPaT数据持续更新,使车辆运动与绿灯信号相位保持一致,以最小化停车次数并改善交通流量。

下面的对话框概述了生成的导航计划,包括逐步车道转换、估计行程时间和实时信号相位条件。V2X-LLM导航建议遵循结构化推理过程,确保车辆在复杂城市交叉口中的最佳运动。过程从时间戳匹配开始,使建议与最新BSM数据保持一致,确保车辆定位准确。这一步对于保持与实时交通状况的一致性至关重要。一旦确定了车辆位置,系统检索走廊布局并确定车道连接性,确保所有建议的转换符合道路基础设施和信号组规定。信号相位评估通过整合剩余相位持续时间和预期相位转换进一步细化了建议,使系统能够将车辆运动与绿灯信号同步,并最小化等待时间。行程时间估计阶段利用历史拥堵趋势、实时车辆速度和交叉口间距生成精确的到达时间预测。这确保联网车辆能够提前预测车道转换,增强与其他道路使用者的协调,并减少拥堵。

通过结合空间分析、信号相位对齐和预测性交通建模来构建建议,V2X-LLM框架提供了一种自适应且响应式的导航策略,优化了城市出行。

img

img▲图7| 导航建议实验

3.3. 性能评估

为评估V2X-LLM框架,我们对四项核心任务进行了全面评估:场景解释、V2X数据描述、状态预测和导航建议。进行了35分钟的实地测试,期间收集了18,340条BSM消息和超过110,000条SPaT消息。数据根据各任务的要求被结构化为特定任务切片,长度各不相同。

如图8所示,场景解释任务展示了高车道连接准确性(95%),表明可靠地表示车道配置。然而,系统在估计交叉口距离时存在0.3英里的误差,这可能源于地图数据限制或传感器不准确。对于V2X数据描述任务,系统实现了98.9%的车道识别准确率和98.1%的交通信号相位检测准确率,验证了其在集成和解释V2X数据方面的有效性。尽管如此,相位时间估计表现出平均1.8秒的误差,可能是由于信号变异性或传输延迟引起的。

img▲图8| 性能评估结果

状态预测任务显示,随着预测时段延长,车辆状态预测误差如预期增加,从1秒时的7.4英尺到5秒时的89.6英尺不等,反映了保持长期预测准确性的挑战。信号相位估计表现出5.7秒的误差,这可以归因于在动态交通条件下预测相位转换的复杂性。对于导航建议任务,框架在到达时间预测方面遇到了越来越大的误差,在第一个交叉口为16.1秒,第二个为35.6秒,第三个为62.2秒,表明在较长行驶距离上存在不确定性的累积效应。此外,信号相位识别的准确率从第一个交叉口的95.2%下降到第三个的74.4%,强调了在长距离路线规划和信号协调中保持精度的挑战。

img

通过整合先进的数据管道和基于LLM的分析,V2X-LLM框架增强了对交通数据的实时解释,提供了关于交通状况和基础设施状态的可操作见解。该框架设计用于支持智能交通应用,围绕四项核心任务构建:场景解释(生成交通情况的详细描述)、V2X数据描述(捕获并总结车辆和基础设施信息)、状态预测(预测未来交通状态)以及导航建议(提供优化路线建议)。这些任务共同提高了交通分析的准确性,增强了安全性,并促进了更高效的交通流管理。

评估表明V2X-LLM在处理大规模V2X数据和生成准确交通见解方面的有效性。框架在车道识别和信号相位解释方面表现出高准确率,有效捕获实时交通状况。然而,在长期车辆状态预测和信号相位估计方面存在预测挑战,随着时间推移误差会累积。类似地,随着行程时间增加,导航准确性下降,影响后期交叉口的到达时间精度。这些发现突显了框架强大的数据集成和推理能力,同时也确定了预测建模和实时调整方面需要改进的领域。

尽管V2X-LLM框架具有创新性,但仍面临一些限制,主要与数据延迟和实时处理的计算挑战有关。这些问题可能影响系统在动态交通环境中的响应能力。未来研究应关注微调LLM以提高交通场景的准确性,并探索混合AI方法。整合视觉-语言模型(VLMs)和其他神经网络可以通过结合视觉感知和基于语言的推理来增强预测能力。此外,优化计算效率和开发更具适应性的处理技术对于实时应用至关重要。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值