第二章 矩阵代数(线性代数)

一、向量

  • n维行向量:1 × \times ×n的矩阵. n维列向量:n$\times$1的矩阵.

  • 在三维平面 R 3 R^3 R3中,由三个不同时共面的向量可组成整个三维空间

  • 线性方程组的

    • 1.矩阵形式: A m × n ⋅ x n × 1 → = β m × 1 → A_{m\times n} \cdot \overrightarrow{x_{n\times 1}}=\overrightarrow{\beta_{m\times 1}} Am×nxn×1 =βm×1
    • 2.向量形式: x 1 α 1 + x 2 α 2 + . . . + x n α n = β x_1\alpha_1+x_2\alpha_2+...+x_n\alpha_n=\beta x1α1+x2α2+...+xnαn=β
      • 按列分:n个m维列向量 A m × n = [ α 1 α 2 . . . α n ] A_{m\times n}=\begin{bmatrix}\alpha_1&\alpha_2&...&\alpha_n \end{bmatrix} Am×n=[α1α2...αn]
      • 方程组有解:向量 β \beta β可以表示成向量组 { α 1 , α 2 , . . . , α n } \{\alpha_1,\alpha_2,...,\alpha_n\} {α1,α2,...,αn}线性组合

二、代数运算

  • 1.加法(同型矩阵)
  • 2.数乘
  • 3.乘法:
    • 1.实数集上的乘法: a ≠ 0 时 , a x = y 表 示 x ∈ R → y = a x y ∈ R a\neq0时,ax=y表示x\in R \xrightarrow{y=ax} y\in R a=0ax=yxRy=ax yR
      矩阵上的乘法: A m × n ⋅ X n × 1 = b m × 1 表 示 X n × 1 ∈ R n ( n 维 ) → Y = A X Y m × 1 ∈ R m ( m 维 ) A_{m\times {\color{red}n}} \cdot X_{{\color{red}n} \times 1}=b_{\color{red}m\times 1}表示X_{n \times1}\in R^n (n维)\xrightarrow{Y=AX}Y_{m \times1}\in R^m (m维) Am×nXn×1=bm×1Xn×1RnnY=AX Ym×1Rmm
      A m × s ⋅ X s × n = b m × n 定 义 : [ α 11 α 12 . . . α 1 s α 21 α 22 . . . α 2 s ⋮ ⋮ . . . ⋮ α m 1 α m 2 . . . α m s ] ⋅ [ α 11 α 12 . . . α 1 n α 21 α 22 . . . α 2 n ⋮ ⋮ . . . ⋮ α s 1 α s 2 . . . α s n ] = [ α 11 α 12 . . . α 1 n α 21 α 22 . . . α 2 n ⋮ ⋮ . . . ⋮ α m 1 α m 2 . . . α m n ] A_{m\times {\color{red}s}} \cdot X_{{\color{red}s} \times n}=b_{\color{red}m\times n}定义:\\ \begin{bmatrix}\boxed{\alpha_{11}}&\boxed{\alpha_{12}}&...&\boxed{\alpha_{1{\color{red}s}}}\\\alpha_{21}&\alpha_{22}&...&\alpha_{2{\color{red}s}}\\\vdots&\vdots&...&\vdots\\\alpha_{m1}&\alpha_{m2}&...&\alpha_{m{\color{red}s}}\end{bmatrix} \cdot \begin{bmatrix}\boxed{\alpha_{11}}&\alpha_{12}&...&\alpha_{1n}\\\boxed{\alpha_{21}}&\alpha_{22}&...&\alpha_{2n}\\\vdots&\vdots&...&\vdots\\\boxed{\alpha_{{\color{red}s}1}}&\alpha_{{\color{red}s}2}&...&\alpha_{{\color{red}s}n}\end{bmatrix} =\begin{bmatrix}\alpha_{11}&\alpha_{12}&...&\alpha_{1n}\\\alpha_{21}&\alpha_{22}&...&\alpha_{2n}\\\vdots&\vdots&...&\vdots\\\alpha_{m1}&\alpha_{m2}&...&\alpha_{mn}\end{bmatrix} Am×sXs×n=bm×n:α11α21αm1α12α22αm2............α1sα2sαmsα11α21αs1α12α22αs2............α1nα2nαsn=α11α21αm1α12α22αm2............α1nα2nαmn

    • 2.不满足:

      • 交换律 A B ≠ B A AB\neq BA AB=BA
      • 消去律 A B = A C 且 A ≠ 0 ⇏ B = C AB=AC且A\neq 0 \nRightarrow B=C AB=ACA=0B=C
    • 3.满足:

      • 结合律 ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
      • 分配律 A ( B + C ) = A B + A C , ( A + B ) C = A C + B C A(B+C)=AB+AC,(A+B)C=AC+BC A(B+C)=AB+AC,(A+B)C=AC+BC
    • 4.与单位方阵 ( E n = [ 1 0 . . . 0 0 1 . . . 0 ⋮ ⋮ ⋮ 0 0 . . . 1 ] ) (E_n=\begin{bmatrix}1&0&...&0 \\ 0&1&...&0 \\ \vdots&\vdots& &\vdots \\ 0&0&...&1\end{bmatrix} ) (En=100010.........001) E m A m × n = A m × n E n = A E_mA_{m\times n}=A_{m\times n}E_n=A EmAm×n=Am×nEn=A

    • 5.与初等矩阵(单位阵经过一次初等变换得到的矩阵):(左乘变行,右乘变列

      • 1).对换:
        [ 0 1 0 1 0 0 0 0 1 ] ⋅ [ a b c d e f g h i j k l ] = [ e f g h a b c d i j k l ] [ a b c d e f g h i j k l ] ⋅ [ 0 1 0 1 0 0 0 0 1 ] = [ b a c e d f h g i k j l ] \begin{bmatrix} 0&1&0 \\ 1&0&0 \\ 0&0&1\end{bmatrix}\cdot \begin{bmatrix} a&b&c&d \\ \boxed e&\boxed f&\boxed g&\boxed h \\ i&j&k&l \end{bmatrix}=\begin{bmatrix} \boxed e&\boxed f&\boxed g&\boxed h \\ a&b&c&d \\ i&j&k&l \end{bmatrix} \\ \begin{bmatrix} a&\boxed b&c \\ d&\boxed e&f \\ g&\boxed h&i \\ j&\boxed k&l \end{bmatrix} \cdot \begin{bmatrix} 0&1&0 \\ 1&0&0 \\ 0&0&1\end{bmatrix}=\begin{bmatrix} \boxed b&a&c \\ \boxed e&d&f \\ \boxed h&g&i \\ \boxed k&j&l \end{bmatrix} 010100001aeibfjcgkdhl=eaifbjgckhdladgjbehkcfil010100001=behkadgjcfil
      • 2).数乘:
        [ 1 0 0 0 p 0 0 0 1 ] ⋅ [ a b c d e f g h i j k l ] = [ a b c d p e p f p g p h i j k l ] \begin{bmatrix} 1&0&0 \\ 0&p&0 \\ 0&0&1\end{bmatrix}\cdot \begin{bmatrix} a&b&c&d \\ \boxed e&\boxed f&\boxed g&\boxed h \\ i&j&k&l \end{bmatrix}=\begin{bmatrix} a&b&c&d \\ \boxed{pe}&\boxed{pf}&\boxed{pg}&\boxed{ph} \\ i&j&k&l \end{bmatrix} 1000p0001aeibfjcgkdhl=apeibpfjcpgkdphl
      • 3).倍加:
        [ 1 0 p 0 1 0 0 0 1 ] ⋅ [ a b c d e f g h i j k l ] = [ a + p i b + p j c + p k d + p l e f g h i j k l ] \begin{bmatrix} 1&0&p \\ 0&1&0 \\ 0&0&1\end{bmatrix}\cdot \begin{bmatrix} a&b&c&d \\ e&f&g&h \\ i&j&k&l \end{bmatrix}=\begin{bmatrix} \boxed{a+pi}&\boxed{b+pj}&\boxed{c+pk}&\boxed{d+pl} \\ e&f&g&h \\ i&j&k&l \end{bmatrix} 100010p01aeibfjcgkdhl=a+pieib+pjfjc+pkgkd+plhl
  • 4.(方阵的)幂运算
    ​ 单位阵 E E E,数量阵 k E kE kE,有 A 0 = E , E A = A , A E = A A^0=E,EA=A,AE=A A0=EEA=AAE=A.
    • ( A B ) k ({\color{red}AB})^k (AB)k = ( A B ) ( A B ) . . . ( A B ) = A ( B A ) ( B A ) . . . ( B A ) B = A ( A B ) k − 1 B =(AB)(AB)...(AB)=A(BA)(BA)...(BA)B=A({\color{red}AB})^{k-1}B =(AB)(AB)...(AB)=A(BA)(BA)...(BA)B=A(AB)k1B.

    • ( A + λ E ) k (A+\lambda E)^k (A+λE)k = A k + C k 1 λ A k − 1 + L + C k k − 1 λ k − 1 A + λ k E =A^k+C^1_k\lambda A^{k-1}+L+C^{k-1}_k\lambda^{k-1} A+\lambda^k E =Ak+Ck1λAk1+L+Ckk1λk1A+λkE.
      方阵多项式: f ( A ) = a k A k + a k − 1 A k − 1 + L + a 1 A + a 0 E f(A)=a_kA^k+a_{k-1}A^{k-1}+L+a_1A+a_0E f(A)=akAk+ak1Ak1+L+a1A+a0E.

      例1:
      设 A = [ λ 1 0 0 λ 1 0 0 λ ] , 计 算 A k . {\color{blue}设A=\begin{bmatrix} \lambda&1&0 \\ 0&\lambda&1 \\ 0&0&\lambda \end{bmatrix},计算A^k.} A=λ001λ001λAk.
      解:
      A = B + λ E = [ 0 1 0 0 0 1 0 0 0 ] + [ λ 0 0 0 λ 0 0 0 λ ] ∵ B 3 = 0 ∴ A k = ( B + λ E ) k = λ k E + ( k λ k − 1 ) B + ( k ( k − 1 ) 2 λ k − 2 ) B 2 = [ λ k k λ k − 1 k ( k − 1 ) 2 λ k − 2 0 λ k k λ k − 1 0 0 λ k ] A=B+\lambda E=\begin{bmatrix} 0&1&0 \\ 0&0&1 \\ 0&0&0\end{bmatrix}+\begin{bmatrix} \lambda&0&0 \\ 0&\lambda&0 \\ 0&0&\lambda \end{bmatrix} \\ \because B^3=0 \\ \therefore A^k=(B+\lambda E)^k=\lambda^k E+(k\lambda^{k-1})B+(\dfrac{k(k-1)}{2}\lambda^{k-2})B^2= \begin{bmatrix} \lambda^k&k\lambda^{k-1}&\dfrac{k(k-1)}{2}\lambda^{k-2} \\ 0&\lambda^k&k\lambda^{k-1} \\ 0&0&\lambda^k\end{bmatrix} A=B+λE=000100010+λ000λ000λB3=0Ak=(B+λE)k=λkE+(kλk1)B+(2k(k1)λk2)B2=λk00kλk1λk02k(k1)λk2kλk1λk

  • 数学归纳法

三、(方阵的)逆矩阵与矩阵初等变换

乘法逆元: A ⋅ A − 1 = A − 1 ⋅ A = E A \cdot A^{-1}=A^{-1} \cdot A=E AA1=A1A=E

  1. P23 定理2.3.1:若 A A A逆矩阵存在(可逆),则其唯一
  2. n元线性方程组 A n × n X = B A_{n \times n}X=B An×nX=B若A是可逆矩阵,则有唯一解 X = A − 1 B X=A^{-1}B X=A1B
  3. n元齐次线性方程组A,若A是可逆矩阵,则只有零解
  4. P33 定理2.3.2:可逆矩阵== ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1==.
    P34 推论2.3.1:可逆矩阵 ( P 1 P 2 . . . P m ) − 1 = P m − 1 P m − 1 − 1 . . . p 1 − 1 (P_{\color{red}1}P_{\color{red}2}...P_{\color{red}m})^{-1}=P_{\color{red}m}^{-1}P_{\color{red}m-1}^{-1}...p_{\color{red}1}^{-1} (P1P2...Pm)1=Pm1Pm11...p11.
  5. P35 引理2.3.1: 对 A m × n 进 行 初 等 行 变 换 , 相 当 于 对 A 左 乘 初 等 矩 阵 P m . 对 A m × n 进 行 初 等 列 变 换 , 相 当 于 对 A 右 乘 初 等 矩 阵 P n . 对A_{m \times n}进行初等{\color{red}行}变换,相当于对A{\color{red}左}乘初等矩阵P_{\color{red}m}.对A_{m \times n}进行初等{\color{red}列}变换,相当于对A{\color{red}右}乘初等矩阵P_{\color{red}n}. Am×nAPm.Am×nAPn.
    ​ 推论:初等矩阵均可逆
  • 1. P − 1 ( i , j ) = P ( i , j ) P^{-1}(i,j)=P(i,j) P1(i,j)=P(i,j)
    [ 1 0 0 0 0 1 0 1 0 ] ⋅ [ 1 0 0 0 0 1 0 1 0 ] = E \begin{bmatrix} 1&0&0 \\ 0&0&1 \\ 0&1&0 \end{bmatrix} \cdot \begin{bmatrix} 1&0&0 \\ 0&0&1 \\ 0&1&0 \end{bmatrix}=E 100001010100001010=E
  • 2. P − 1 ( i ( k ) ) = P ( i ( 1 k ) ) P^{-1}(i(k))=P(i(\dfrac{1}{k})) P1(i(k))=P(i(k1))
    [ 1 0 0 0 k 0 0 0 1 ] ⋅ [ 1 0 0 0 1 k 0 0 0 1 ] = E \begin{bmatrix} 1&0&0 \\ 0&k&0 \\ 0&0&1 \end{bmatrix} \cdot \begin{bmatrix} 1&0&0 \\ 0&\dfrac{1}{k}&0 \\ 0&0&1 \end{bmatrix}=E 1000k00011000k10001=E - 3. P − 1 ( i , j ( k ) ) = P ( i , j ( − k ) ) P^{-1}(i,j(k))=P(i,j(-k)) P1(i,j(k))=P(i,j(k))
    [ 1 0 k 0 1 0 0 0 1 ] ⋅ [ 1 0 − k 0 1 0 0 0 1 ] = E \begin{bmatrix} 1&0&k \\ 0&1&0 \\ 0&0&1 \end{bmatrix} \cdot \begin{bmatrix} 1&0&-k \\ 0&1&0 \\ 0&0&1 \end{bmatrix}=E 100010k01100010k01=E
  1. P36 定理2.3.4: A n A_n An为一个n阶方阵,则== A A A可逆    ⟺    A x = 0 \iff Ax=0 Ax=0只有零解( r ( A ) = n r(A)=n r(A)=n    ⟺    A \iff A A E n E_n En行等价( A A A可经有限次初等行变换化为 E n E_n En)==
    ∵ A X = 0 , A − 1 A X = A − 1 0 , E X = 0 ∴ X = 0 \because AX=0,A^{-1}AX=A^{-1}0,EX=0 \\ \therefore X=0 AX=0,A1AX=A10,EX=0X=0
    ​ 故,当A可逆,则存在 P k P k − 1 . . . P 1 A = E P_kP_{k-1}...P_1A=E PkPk1...P1A=E,故有 A − 1 = P k P k − 1 . . . P 1 A^{-1}=P_kP_{k-1}...P_1 A1=PkPk1...P1.
  2. 求逆矩阵: n × 2 n 矩 阵 ( A ∣ E ) → 初 等 行 变 换 ( E ∣ A − 1 )   o r   2 n × n 矩 阵 [ A E ] → 初 等 列 变 换 [ E A − 1 ] n\times 2n矩阵(A|E)\xrightarrow{初等行变换}(E|A^{-1})\ or\ 2n\times n矩阵 \begin{bmatrix}A \\ E \end{bmatrix}\xrightarrow{初等列变换}\begin{bmatrix}E \\ A^{-1} \end{bmatrix} n×2n(AE) (EA1) or 2n×n[AE] [EA1].
    ​ 推广: ( A ∣ B ) → 初 等 行 变 换 ( E ∣ A − 1 B ) (A|B)\xrightarrow{初等行变换}(E|A^{-1}B) (AB) (EA1B).
    ​ 拓展:
    ( 1 ) A n × n X n × m = B n × m , i f   A 可 逆 , X = A − 1 B ( 2 ) X m × n A n × n = B m × n , i f   A 可 逆 , X = B A − 1 ( 3 ) A m × m X m × n B n × n = C m × n , i f   A , B 可 逆 , X = A − 1 C B − 1 \begin{aligned}(1)&A_{n \times n}X_{n \times m}=B_{n\times m},&&if\ A可逆,X=A^{-1}B\\ (2)&X_{m \times n}A_{n \times n}=B_{m\times n},&&if\ A可逆,X=BA^{-1}\\ (3)&A_{m \times m}X_{m \times n}B_{n \times n}=C_{m\times n},&&if\ A,B可逆,X=A^{-1}CB^{-1} \end{aligned} (1)(2)(3)An×nXn×m=Bn×m,Xm×nAn×n=Bm×n,Am×mXm×nBn×n=Cm×n,if AX=A1Bif AX=BA1if A,BX=A1CB1

四、转置矩阵与重要方阵

  1. 转置矩阵
    向 量 a = [ x y z ] , a T = [ x , y , z ] a T a = x 2 + y 2 + z 2 , 故 a T a = ∣ ∣ a → ∣ ∣ ( 向 量 a 的 长 度 ) 向量a=\begin{bmatrix} x\\y\\z \end{bmatrix},a^T=\begin{bmatrix} x,y,z \end{bmatrix} \\a^Ta=x^2+y^2+z^2,故a^Ta=||\overrightarrow a||(向量a的长度) a=xyzaT=[x,y,z]aTa=x2+y2+z2aTa=a (a)

    • 运算规律:
      • ( A T ) T = A , ( A + B ) T = A T + B T , ( λ A ) T = λ A T (A^T)^T=A,(A+B)^T=A^T+B^T,(\lambda A)^T=\lambda A^T (AT)T=A(A+B)T=AT+BT(λA)T=λAT.
      • ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT.
      • ( A − 1 ) T = ( A T ) − 1 (A^{-1})^T=(A^T)^{-1} (A1)T=(AT)1,证: ( A T ) − 1 A T = E = E T = ( A A − 1 ) T = ( A − 1 ) T A T (A^T)^{-1}A^T=E=E^T=(AA^{-1})^T=(A^{-1})^TA^T (AT)1AT=E=ET=(AA1)T=(A1)TAT.
        例2: a 为 三 维 列 向 量 , a a T = [ 1 − 1 1 − 1 1 − 1 1 − 1 1 ] , 求 a T a \color{blue}a为三维列向量,aa^T=\begin{bmatrix} 1&-1&1\\-1&1&-1\\1&-1&1 \end{bmatrix},求a^Ta aaaT=111111111aTa
        t r ( a T a ) = t r ( a a T )   ( t r a c e 迹 : 对 角 线 的 平 方 和 ) {\color{red}tr(a^Ta)=tr(aa^T)}\ (trace迹:对角线的平方和) tr(aTa)=tr(aaT) (trace线)
        行向量×列向量= 数值 =列向量×行向量的结果矩阵的对角线的和
        ∵ a = [ x y z ] , a T = [ x , y , z ] , a a T = [ x 2 y 2 z 2 ] , a T a = x 2 + y 2 + z 2 故 a T a = 1 + 1 + 1 = 3. \because a=\begin{bmatrix} x\\y\\z \end{bmatrix},a^T=\begin{bmatrix} x,y,z \end{bmatrix}, aa^T=\begin{bmatrix} x^2&&\\&y^2&\\&&z^2 \end{bmatrix},a^Ta=x^2+y^2+z^2 \\ 故a^Ta=1+1+1=3. a=xyzaT=[x,y,z]aaT=x2y2z2aTa=x2+y2+z2aTa=1+1+1=3.
  2. 对称矩阵 A T = A A^T=A AT=A反对称矩阵 A T = − A A^T=-A AT=A

    • 结论1: A m × n A_{m\times n} Am×n A A T AA^T AAT A T A A^TA ATA都是对称矩阵.
      证: ( A T A ) T = A T ( A T ) T = A T A (A^TA)^T=A^T(A^T)^T=A^TA (ATA)T=AT(AT)T=ATA.
    • 结论2: A n A_n An A + A T A+A^T A+AT是对称矩阵, A − A T A-A^T AAT是反对称矩阵 A = A + A T 2 + A − A T 2 ( 方 阵 可 以 表 示 为 对 称 矩 阵 和 反 对 称 矩 阵 之 和 ) A=\dfrac{A+A^T}{2}+\dfrac{A-A^T}{2}(方阵可以表示为对称矩阵和反对称矩阵之和) A=2A+AT+2AAT().
      证: ( A − A T ) T = A T − ( A T ) T = − ( A − A T ) (A-A^T)^T=A^T-(A^T)^T=-(A-A^T) (AAT)T=AT(AT)T=(AAT).
    • 对称矩阵的乘积不一定是对称阵
      例3: 对 于 方 阵 A 、 B , 有 A T = − A , B T = − B . 证 : ( 1 ) A B − B A 是 n 阶 反 对 称 矩 阵 ( 2 ) A B 是 n 阶 对 称 矩 阵    ⟺    A B = B A \color{blue}对于方阵A、B,有A^T=-A,B^T=-B.证:(1)AB-BA是n阶反对称矩阵(2)AB是n阶对称矩阵\iff AB=BA ABAT=A,BT=B.(1)ABBAn(2)ABnAB=BA
      ( 1 ) ( A B − B A ) T = ( A B ) T − ( B A ) T = B T A T − A T B T = ( − B ) ( − A ) − ( − A ) ( − B ) = − ( A B − B A ) ( 2 ) 充 分 性 : A B = ( A B ) T = B T A T = B A 必 要 性 : ( A B ) T = B T A T = B A = A B (1)(AB-BA)^T=(AB)^T-(BA)^T=B^TA^T-A^TB^T=(-B)(-A)-(-A)(-B)=-(AB-BA) \\ (2)充分性:AB=(AB)^T=B^TA^T=BA \\ 必要性:(AB)^T=B^TA^T=BA=AB (1)(ABBA)T=(AB)T(BA)T=BTATATBT=(B)(A)(A)(B)=(ABBA)(2):AB=(AB)T=BTAT=BA(AB)T=BTAT=BA=AB
  3. 正交矩阵 A T A = E A^TA=E ATA=E

    • 方阵 A n A_n An为正交矩阵    ⟺    A T = A − 1 \iff A^T=A^{-1} AT=A1
      方阵 A n A_n An为正交矩阵    ⟺    ∑ k = 1 n a i k a j k ( 或 a k i a k j ) = { 1 i = j 0 i ≠ j ( i , j = 1 , 2 , . . . , n ) , 即 每 一 行 ( 列 ) n 个 元 的 平 方 和 等 于 1 , 两 不 同 行 ( 列 ) 的 对 应 元 乘 积 和 等 于 0 \iff \sum\limits^n_{k=1}a_{ik}a_{jk}(或a_{ki}a_{kj})=\begin{cases} 1&i=j \\ 0&i\ne j \end{cases}(i,j=1,2,...,n),即每一行(列)n个元的平方和等于1,两不同行(列)的对应元乘积和等于0 k=1naikajk(akiakj)={10i=ji=j(i,j=1,2,...,n)n10
    • A , B A,B A,B为正交矩阵,则 A B 和 B A AB和BA ABBA也是正交矩阵, A + B A+B A+B不一定
    • 吉文斯变换:不会改变向量的长度,只会改变方向

五、分块矩阵

  • 不能乱分块
  • 运算规则:
    • 加法
    • 数乘
    • 乘法:左矩阵的分法和右矩阵的分法要相同
    • 转置:大的转置,小的再转置
      有 A 4 × 5 = [ A 3 × 3 B 3 × 2 C 1 × 3 D 1 × 2 ] , 则 A 5 × 4 T = [ A 3 × 3 T C 3 × 1 T B 2 × 3 T D 2 × 1 T ] . 有A_{4\times 5}=\begin{bmatrix} A_{3\times3}&B_{3\times2}\\ C_{1\times3}&D_{1\times2} \end{bmatrix},则A^T_{5\times 4}=\begin{bmatrix} A^T_{3\times3}&C^T_{3\times1} \\ B^T_{2\times3}&D^T_{2\times1} \end{bmatrix}. A4×5=[A3×3C1×3B3×2D1×2]A5×4T=[A3×3TB2×3TC3×1TD2×1T].
      • 可利用矩阵分块简化计算(当矩阵很大且零很多时):加,乘,求幂,求逆.
        例4: M = [ A r × r 0 C s × r D s × s ] , A r × r 和 D s × s 均 可 逆 , 求 M − 1 \color{blue}M=\begin{bmatrix} A_{r\times r}&0\\ C_{s\times r}&D_{s\times s} \end{bmatrix},A_{r\times r}和D_{s\times s}均可逆,求M^{-1} M=[Ar×rCs×r0Ds×s]Ar×rDs×sM1.(待定系数法)
        使 [ A 0 C D ] [ X Y Z T ] = E = [ E r 0 0 E s ] , 列 方 程 求 得 M − 1 = [ A − 1 0 − D − 1 C A − 1 D − 1 ] . 使\begin{bmatrix} A&0\\ C&D \end{bmatrix}\begin{bmatrix} X&Y\\ Z&T \end{bmatrix}=E=\begin{bmatrix} E_r&0\\ 0&E_s \end{bmatrix},\\ 列方程求得M^{-1}=\begin{bmatrix} A^{-1}&0 \\ -D^{-1}CA^{-1}&D^{-1} \end{bmatrix}. 使[AC0D][XZYT]=E=[Er00Es],M1=[A1D1CA10D1].
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值