[note] 微积分 Part 8 曲面积分与公式集锦:Green,Gauss,Stokes

第一型曲面积分

直径

直径趋于零则面积一定趋于零
但面积趋于零,有可能出现长条的情况,不满足密度近似均匀和形体近似平面

定义

(割极细,以至于密度和形体在面元内部均)(,随后求)(,在这种切分下整体呈现出稳定的极限值)

性质(略)

线性性质,分片光滑的可累加性
(重要)奇偶性

计算

完全可以认为是第一类曲线积分的形式上的直接拓展。
lim ⁡ λ → 0 ∑ i = 1 n f ( x , y , z ) Δ S i = lim ⁡ λ → 0 ∑ i = 1 n f ( x , y , g ( x , y ) ) 1 + g x 2 ( x i , y i ) + g y 2 ( x i , y i )   d σ = ∬ D f ( x , y , g ( x , y ) ) 1 + g x 2 + g y 2   d σ \lim\limits_{\lambda\to0}\sum_{i=1}^{n}f(x,y,z)\Delta S_i\\=\lim\limits_{\lambda\to0}\sum_{i=1}^nf(x,y,g(x,y))\sqrt{1+g_x^2(x_i,y_i)+g_y^2(x_i,y^i)}\,\mathrm d\sigma\\ =\iint\limits_Df(x,y,g(x,y))\sqrt{1+g_x^2+g_y^2}\,\mathrm d\sigma λ0limi=1nf(x,y,z)ΔSi=λ0limi=1nf(x,y,g(x,y))1+gx2(xi,yi)+gy2(xi,yi) dσ=Df(x,y,g(x,y))1+gx2+gy2 dσ
最后一项是一个二重积分。

不难看出线面积分之间的关系。我们只是将一次一元积分转化成(二元的)二重积分

另外方向余弦可以利用参数方程进行表示,这种情况下法向量可以利用 r u × r v r_u\times r_v ru×rv替换,从而知 cos ⁡ γ = C A 2 + B 2 + C 2 \cos\gamma=\frac{C}{\sqrt{A^2+B^2+C^2}} cosγ=A2+B2+C2 C。随后我们会看到这为我们计算带来很大的便利性。
作变量代换:
d S = d σ ∣ cos ⁡ γ ∣ = A 2 + B 2 + C 2 ∣ C ∣ d σ = E G − F 2   d u   d v \mathrm dS=\frac{\mathrm d\sigma}{|\cos\gamma|}=\frac{\sqrt{A^2+B^2+C^2}}{|C|}\mathrm d\sigma=\sqrt{EG-F^2}\,\mathrm du\,\mathrm dv dS=cosγdσ=CA2+B2+C2 dσ=EGF2 dudv

其中 A , B , C A,B,C A,B,C i → , j → , k → \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} i ,j ,k 的系数,分别为 D ( y , z ) D ( u , v ) , D ( x , z ) D ( u , v ) , D ( x , y ) D ( u , v ) \frac{D(y,z)}{D(u,v)},\frac{D(x,z)}{D(u,v)},\frac{D(x,y)}{D(u,v)} D(u,v)D(y,z),D(u,v)D(x,z),D(u,v)D(x,y) ∣ C ∣ |C| C和我们换元产生的中间结果相消了。

为什么会出现这样的几个Jacobi式呢?我们可以拿 i → \overrightarrow{i} i 为例,垂直于 z z z轴的变化是在平行于 x O y xOy xOy的某个面中,我们只有 x , y x,y x,y两个变量,对它们进行变换,利用叉积 d x   d y = ∣ ( x 1 − x 0 ) ( y 3 − y 0 ) − ( x 3 − x 0 ) ( y 1 − y 0 ) ∣ ≈ ∣ ∂ x ∂ ξ ∂ y ∂ η − ∂ x ∂ η ∂ y ∂ ξ ∣   d ξ   d η = ∣ J 3 ∣   d ξ d η \mathrm dx\,\mathrm dy=|(x_1-x_0)(y_3-y_0)-(x_3-x_0)(y_1-y_0)|\approx|\frac{\partial x}{\partial \xi}\frac{\partial y}{\partial\eta}-\frac{\partial x}{\partial\eta}\frac{\partial y}{\partial\xi}|\,\mathrm d\xi \,\mathrm d\eta=|J_3|\,\mathrm d\xi\mathrm d\eta dxdy=(x1x0)(y3y0)(x3x0)(y1y0)ξxηyηxξydξdη=J3dξdη,类似可得其他两个Jacobi式。
方向余弦是在这个2to3映射空间中定义的,每个维度上都有一定的转化尺度,用Jacobi式衡量。方向余弦的大小不仅有几何意义,还可以反映某个转化尺度的大小。
某个几何面上的微元除以方向余弦,就可以表示成这个几何面和S曲面的关系,我们还可以进一步利用这个几何面和映射虚面上微元 d u   d v \mathrm du\,\mathrm dv dudv的关系,可知这个大根式即可转化为虚面上的。

简要总结:S,xOz,xOy,yOz都是几何面。我们需要利用Jacobi式衡量的,都与换元的转换尺度有关。

第二型曲面积分

双侧曲面

返回起始点时法向量指向始终不变

性质

  • 有向性(重要)所以慎用奇偶性
  • 线性性质
  • 分片曲面同向可加性

计算(重要)

转化成仅有常数+几何意义可解的问题是少见但有效的。
通常用坐标法求解。代入转化为二重积分。
一般转化方法: ∬ Σ R ( x , y , z )   d x   d y = ∬ D R [ x , y , z ( x , y ) ]   d x   d y \iint\limits_\Sigma R(x,y,z)\,\mathrm dx\,\mathrm dy=\iint\limits_DR[x,y,z(x,y)]\,\mathrm dx\,\mathrm dy ΣR(x,y,z)dxdy=DR[x,y,z(x,y)]dxdy
公式总结如下
∬ S F → ⋅ n →   d S ∬ D P   d y   d z + Q   d z   d x + R   d x   d y ± ∬ D P ( − f x ) + Q ( − f y ) + R   d σ . . . (   d x   d y ) ± ∬ D F → ( u , v ) r u × r v ∣ r u × r v ∣ E G − F 2   d u   d v \iint\limits_S\overrightarrow{F}\cdot\overrightarrow{n}\,\mathrm dS\\ \iint\limits_DP\,\mathrm dy\,\mathrm dz+Q\,\mathrm dz\,\mathrm dx+R\,\mathrm dx\,\mathrm dy\\ \pm\iint\limits_DP(-f_x)+Q(-f_y)+R\,\mathrm d\sigma...(\,\mathrm dx\,\mathrm dy) \\ \pm\iint\limits_D\overrightarrow{F}(u,v)\frac{r_u\times r_v}{|r_u\times r_v|}\sqrt{EG-F^2}\,\mathrm du\,\mathrm dv SF n dSDPdydz+Qdzdx+Rdxdy±DP(fx)+Q(fy)+Rdσ...(dxdy)±DF (u,v)ru×rvru×rvEGF2 dudv
其中 ∣ r u × r v ∣ = E G − F 2 \left|r_u\times r_v\right|=\sqrt{EG-F^2} ru×rv=EGF2

这里的 r u , r v r_u,r_v ru,rv r r r是一个二维 ( u , v ) (u,v) (u,v)映射到 ( x , y , z ) (x,y,z) (x,y,z)的三维曲面的两个偏导数。分别都是一个切向量。他们的叉乘方向与法向量相同。单位化之后即得 n → \overrightarrow{n} n

总结:两型面和重积分的关系

∬ Σ R ( x , y , z )   d x   d y = ∬ D x y R [ x , y , z ( x , y ) ]   d x   d y \iint\limits_\Sigma R(x,y,z)\,\mathrm dx\,\mathrm dy=\iint\limits_{D_{xy}}R[x,y,z(x,y)]\,\mathrm dx\,\mathrm dy ΣR(x,y,z)dxdy=DxyR[x,y,z(x,y)]dxdy
从而二型曲面积分可以有如下的转化:
∬ Σ F → ⋅ d S → = ∬ Σ F → ⋅ n →   d S = ∬ Σ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ )   d S = ∬ D P   d y   d z + Q   d z   d x + R   d x   d y \iint\limits_\Sigma\overrightarrow{F}\cdot\mathrm d\overrightarrow{S}=\iint\limits_\Sigma \overrightarrow{F}\cdot\overrightarrow{n}\,\mathrm dS\\=\iint\limits_\Sigma(P\cos\alpha+Q\cos\beta+R\cos\gamma)\,\mathrm dS\\=\iint\limits_D P\,\mathrm dy\,\mathrm dz+Q\,\mathrm dz\,\mathrm dx+R\,\mathrm dx\,\mathrm dy ΣF dS =ΣF n dS=Σ(Pcosα+Qcosβ+Rcosγ)dS=DPdydz+Qdzdx+Rdxdy
二型曲面积分可以通过投影的方式转化成三个一型面相加。

经过方向余弦代入,我们的结论也可以写成:
∬ Σ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) = ∬ D ( P ( − f x ) + Q ( − f y ) + R   ) d x   d y \iint\limits_\Sigma(P\cos\alpha+Q\cos\beta+R\cos\gamma)\\ =\iint\limits_D\left(P(-f_x)+Q(-f_y)+R\,\right)\mathrm dx\,\mathrm dy Σ(Pcosα+Qcosβ+Rcosγ)=D(P(fx)+Q(fy)+R)dxdy
这个统一区域的形式,看起来会好用很多!

几何意义其实不用考虑过多,在某些程度上说,这是一个由于偏导数连续引起的代数结果。几何意义可可以理解成是法向量的朝向的转换。

这样我们就建立了一二型面之间的关系

Gauss公式和Stokes公式

Gauss公式

建立二型面和三重积分的关系
物理意义:散度(由于法向量朝外从而对应-Q)
<整个曲面的散度之和叫做通量,对比Gauss定理的一般形式和积分形式>

各种“散度”

N-L公式(0D-1D)
∫ a b f ( x )   d x = F ( x ) ∣ a b \int_a^bf(x)\,\mathrm dx=F(x)\Big|_a^b abf(x)dx=F(x)ab
平面场散度(1D-2D)
∮ L + F → ⋅ n →   d ℓ = ∬ D ( ∂ P ∂ x + ∂ Q ∂ y )   d x   d y \oint\limits_{L^+}\overrightarrow{\bm F}\cdot\overrightarrow{\bm n}\,\mathrm d\ell=\iint\limits_D\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right)\,\mathrm dx\,\mathrm dy L+F n d=D(xP+yQ)dxdy
Gauss公式(2D-3D)
∯ S + ( P , Q , R ) ⋅ n →   d S = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z )   d V \oiint\limits_{S^+}(P,Q,R)\cdot\overrightarrow{\bm n}\,\mathrm dS=\iiint\limits_\Omega\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)\,\mathrm dV S+ (P,Q,R)n dS=Ω(xP+yQ+zR)dV
其实Green公式和Stokes公式也可以有类似的观点。

Stokes公式

是Green公式的高维形式。
∮ L + P   d x + Q   d y + R   d z = ∬ S + ( ∂ R ∂ y − ∂ Q ∂ z )   d y   d z + ( ∂ P ∂ z − ∂ R ∂ x )   d z   d x + ( ∂ Q ∂ x − ∂ P ∂ y )   d x   d y \oint\limits_{L^+}P\,\mathrm dx+Q\,\mathrm dy+R\,\mathrm dz=\iint\limits_{S^+}\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)\,\mathrm dy\,\mathrm dz+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x} \right)\,\mathrm dz\,\mathrm dx+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\,\mathrm dx\,\mathrm dy L+Pdx+Qdy+Rdz=S+(yRzQ)dydz+(zPxR)dzdx+(xQyP)dxdy
轮换,借助三阶行列式记忆。证明见北大P116,D124

外微分与统一

一阶外微分

从普通的微分和全微分——到
外微分-恰当微分

统一公式(重要)

∫ ∂ Ω ω = ∫ Ω   d ω \int_{\partial \Omega}\omega=\int_\Omega\,\mathrm d\omega Ωω=Ωdω

外微分的计算(掌握即可)

d ω ( x i → ) = ∑ i = 1 n ∑ j = 1 n ∂ f i ∂ x j   d x i \mathrm d \omega(\overrightarrow{x_i})=\sum_{i=1}^n\sum_{j=1}^n\frac{\partial f_i}{\partial x_j}\,\mathrm dx_i dω(xi )=i=1nj=1nxjfidxi

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值