【AI_agent】从零写一个agent框架(三)实现几个示例中的service:llm,tool等

前言

上一篇文章里我们实现了一个基本的运行时,能够将service按照plan执行起来,本文我们尝试实现一些基本节点,最终运行一个最简单的agent。

代码仓库

1. Openai-llm

我们这里还是接openai的llm能力。

先定义一下模型的基本配置,只需要prompt temperature tools context这些简单的参数。

pub  struct LLMNodeRequest {
    #[serde(default = "String::default")]
    pub prompt: String,
    #[serde(default = "LLMNodeRequest::default_model_35")]
    pub model: String,
    #[serde(default = "Vec::default")]
    pub tools: Vec<ChatCompletionTool>,
    #[serde(default = "Vec::default")]
    pub context: Vec<LLMContextMessage>,

    #[serde(default = "LLMNodeRequest::max_tokens_length")]
    pub max_tokens: u16,
    #[serde(default = "LLMNodeRequest::default_temperature")]
    pub temperature: f32,
    #[serde(default = "bool::default")]
    pub is_stream: bool,

    pub query: String,
}

然后实现一下servic,我们这里用上篇文章中包装好的解析层:

impl agent_rt::ServiceLayer  for OpenaiLLMService {
    type Config = CfgBound<LLMNodeRequest>;
    type Output = LLMNodeResponse;

    async fn call(
        &self,
        _code: String,
        ctx: Arc<Context>,
        cfg: Self::Config,
    ) -> anyhow::Result<Self::Output> {
        // wd_log::log_debug_ln!("start call code[{}.{}.openai_llm]",ctx.code,code);
 let cfg = cfg.bound(&ctx) ? ;
        let req = cfg.to_openai_chat_request() ? ;
        let mut stream = self.openai_client.chat().create_stream(req).await ? ;

        let mut resp = LLMNodeResponse::default();
        while  let  Some(msg) = stream.next().await {
            let msg = match msg {
                Ok(o) => o,
                Err(e) => return  Err(anyhow::Error::from(e)),
            };
            for i in msg.choices {
                //文本消息
 if  let  Some(s) = i.delta.content {
                    if  let  Some(s) = Self::try_send_to_channel(&ctx, s) {
                        resp.append_answer(s.as_str());
                    }
                }
                //工具调用
 if  let  Some(tools) = i.delta.tool_calls {
                    resp.append_tools(tools);
                }
            }
        }
        // wd_log::log_debug_ln!("over call code[{}.{}.openai_llm]",ctx.code,code);
 Ok(resp)
    }
}

2.Tool

我们这里还是做通用设计,并不做具体的tool实现,而是抽象一下:

//tool事件发生器
pub trait ToolEvent: Send {
    async fn call(&self, name: &str, args: String) -> anyhow::Result<String>;
}
//tool service实现的结构体
pub struct ToolService {
    loader: Box<dyn ToolEvent + Sync + 'static>,
}

同样的实现一下*ServiceLayer*,当然这里就比较简单了,我们直接将事件call出去就可以了。

impl ServiceLayer  for ToolService {
    type Config = CfgBound<LLMToolCallRequest>;
    type Output = LLMToolCallResponse;

    async fn call(
        &self,
        code: String,
        ctx: Arc<Context>,
        cfg: Self::Config,
    ) -> anyhow::Result<Self::Output> {
        let cfg = cfg.bound(&ctx) ? ;

        let LLMToolCallRequest {call_id,name,args} = cfg;
        wd_log::log_debug_ln!("code[{}] exec tool[{}] args:{:?}", code, name, args);

        let content = self.loader.call(name.as_str(), args).await ? ;

        let resp = LLMToolCallResponse { call_id, content };
        wd_log::log_debug_ln!("code[{}] exec tool[{}] result[{:?}]", code, name, resp);
        Ok(resp)
    }
}

具体的实现可能是本地的rust函数,也能是个api接口,也能是其他脚本,这里用个枚举定义。

pub  enum Tool {
    Http(ToolHttp),
    Python(ToolPython),
    Custom(Arc<dyn ToolFunction + Sync + 'static>),
}

2.1 http实现

在实现具体的tool之前,思考一下,虽然大模型function call的时候,直接给出执行哪个函数,但是我们的多个api通常是在一个服务里,并且有相同的鉴权和签名方式,所以对于http的接口,我们需要先按组(plugin)包装。

所以在调用一个具体的api之前,先找到plugin,这里还是做一个抽象。具体实现可能是数据库或者其他服务加载出来的。

//加载plugin的抽象
pub  trait  PluginSchedule: Send {
    async  fn schedule(&self, plugin_name: &str, tool_name: &str) -> anyhow::Result<Plugin>;
}
//plugin调度器的实现的结构体
pub  struct PluginControl {
    pub schedule: Box<dyn PluginSchedule + Sync + 'static>,
}
//实现上面提到的事件发生器
impl  ToolEvent  for PluginControl {
    async  fn call(&self, name: &str, args: String) -> anyhow::Result<String> {
        let  mut list = name.split('.').into_iter().rev().collect::<Vec<&str>>();
        let plugin_name = list.pop().unwrap_or("");
        let tool_name = list.pop().unwrap_or("");
        let plugin = self.schedule.schedule(plugin_name, tool_name).await ? ;
        plugin.call(tool_name, args).await
}
}

//plugin的定义,统一的鉴权或者代理
pub  struct Plugin {
    pub auth: Option<Oauth>,
    pub server: Option<(String, u16)>, //addr port
 pub tools: HashMap<String, Tool>,
}

http的具体实现:

impl ToolHttp {
    pub  async  fn call(
        self,
        host: String,
        port: u16,
        content: String,
        auth: Option<Oauth>,
    ) -> anyhow::Result<String> {
  ...//实现略,就是组装http并发起请求
  }
}

2.2 rust函数实现

我们还是定义一个trait,并且为所有符合的函数做一个默认实现,如果下;

//函数的抽象
pub  trait  ToolFunction: Send {
    async  fn call(&self, args: String) -> anyhow::Result<String>;
}
//所有符合这个triat的函数的默认实现
impl<T, Fut> ToolFunction for T
where
T: Fn(String) -> Fut + Send + Sync + 'static,
    Fut: Future<Output = anyhow::Result<String>> + Send,
{
    async  fn call(&self, args: String) -> anyhow::Result<String> {
        self(args).await
}
}

2.3 python脚本实现

在实现之前先考虑几个问题:

为什么是python?

思考:老实说我并不喜欢python,我更倾向于lua这种短小轻快的脚本。在我之前写的规则引擎rush里,就用的lua脚本写规则。并且我对比过多个脚本的性能,lua可以甩python几条街。

但是,python是大众的选择,被更多的人接受,没得选,只能是它。

这里有屌大的就要说了,为啥不用js,不用wasm,它们用的人也很多。其实从平台化的角度讲,长远来看这哥俩也是要支持的。

能用本地的python执行吗?

肯定是不能,一般在服务端运行的脚本都要有个沙盒环境。并且为了避免不同本地环境造成的版本差异,包的差异等等,都不能用本地python环境。

以后单开一篇讲吧,要吐的槽太多了。

3. 流程节点

因为我们实现的是流程图策略,所以还需要实现一些功能无关的service,也就是流程图里面的节点。

3.1 分支

先看分支的定义,非常简短,一个数组盛放判断条件和变量,成功走true_goto节点,失败走false_goto节点

pub  struct SelectorServiceConfig {
    //分支判断的条件:或,且
    pub condition: String, 
 //三段式 var1 [comparator] var2
 //comparator ==,!=,>,>=,<,<=,is_null,no_null,contain,no_contain
 // if comparator is [is_null,no_null], do not need var2
 pub vars: Vec<Value>,
    pub true_goto: String,
    pub false_goto: String,
}

具体实现,同样的ServiceLayer

impl agent_rt::ServiceLayer for SelectorService {
    type Config = CfgBound<SelectorServiceConfig>;
    type Output = Value;

    async fn call(
        &self,
        code: String,
        ctx: Arc<Context>,
        cfg: Self::Config,
    ) -> anyhow::Result<Self::Output> {
        let cfg = cfg.bound(&ctx) ? ;
        let mut result = false;
        let all_true = cfg.condition == "且";
        //循环判断条件是否成立
        let mut vars = cfg.vars.into_iter().collect::<VecDeque<Value>>();
        loop {
            ...
            //具体的判断函数,就是根据判断条件,判断条件是否成立,返回bool结果
            let ok = Self::judge(&mut vars) ? ;
            ... //结果检查
        }
        //找到下个执行的节点
        let go_next_node = if result {
            cfg.true_goto
        } else {
            cfg.false_goto
        };
        ctx.plan.update(
            ...//修改执行计划中selector的下一个节点
        ) ? ;
        Ok(Value::Null)
    }
}

3.2 注入

这是为了修改某个节点的配置,比如给llm追加上下文。实现也很简单

impl agent_rt::ServiceLayer for InjectorService {
    type Config = CfgBound<InjectorServiceConfig>;
    type Output = Value;

    async  fn call(
        &self,
        _code: String,
        ctx: Arc<Context>,
        cfg: Self::Config,
    ) -> anyhow::Result<Self::Output> {
        let InjectorServiceConfig {
            from, to, operate, ..
        } = cfg.bound(&ctx) ? ;
        if to.is_empty() {
            return anyhow::anyhow!("InjectorService: from and to must have a value").err();
        }

        //from:修改的结果
        //operate:按照什么方式修改,目前只实现了赋值和追加操作
        //to:修改位置,就是修改哪个变量?
        Self::update(to, &ctx, |x| Self::operate(x, from, operate)) ? ;

        Ok(Value::Null)
    }
}

3.3 变量

这种节点不做任何事情,就是生成一个变量,一般start节点和end节点都是变量节点。

impl agent_rt::ServiceLayer for VarFlowChartService {
    type Config = CfgBound<Value>;
    type Output = Value;

    async  fn call(
        &self,
        _code: String,
        ctx: Arc<Context>,
        cfg: Self::Config,
    ) -> anyhow::Result<Self::Output> {
        let var = cfg.raw_bound_value(&ctx) ? ;
        Ok(var)
    }
}

4. CfgBound

上面的所有节点配置,都用的同样的绑定方式CfgBound来进行绑定,解释一下它是干啥的?

如下图中的选择节点,其中{{llm.tools}}的部分,表示这个变量来自llm节点的执行结果里的tools字段。

这种引用的变量肯定不能每个service都自己实现,就是在CfgBound中进行的绑定。

image.png

测试

测试用例地址

启动服务

上面实现的内容都在wd_agent中,我们想要作为服务提供服务,还需要和agent_rt结合起来一起运行,通过grpc调用。

代码仓库地址,总纲如下:

pub async fn start(addr: &str) {
    //create service
    let openai_llm = wd_agent::rt_node_service::OpenaiLLMService::default();
    let var = wd_agent::rt_node_service::VarFlowChartService::default();
    let python = PythonCodeService::new("http://127.0.0.1:50001")
        .await
        .unwrap();

    //build agent runtime
    let rt = agent_rt::Runtime::default()
        .register_service_layer("openai_llm", openai_llm)
        .register_service_layer("python", python)
        .register_service_layer("flow_chart_selector", SelectorService::default())
        .register_service_layer("flow_chart_injector", InjectorService::default())
        .register_service_layer("workflow", WorkflowService::default())
        .register_service_layer("flow_chart_var", var);

    //启动rpc服务
    let app = serve_entity::AgentServeEntity::new(rt);

    let addr = addr.parse().unwrap();

    wd_log::log_debug_ln!("grpc.Server lister addr[{}]", addr);

    tonic::transport::Server::builder()
        .add_service(proto::agent_service_server::AgentServiceServer::new(app))
        .serve(addr)
        .await
        .unwrap();
}

尾语

本文简单演示了service的实现方式

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值