阿里大模型算法工程师面试题
应聘岗位:阿里大模型算法工程师
面试轮数:第二轮
整体面试感觉:偏难
面试过程回顾
1. 自我介绍
在自我介绍环节,我清晰地阐述了个人基本信息、教育背景、工作经历和技能特长,展示了自信和沟通能力。
2. Leetcode 题
具体题意记不清了,但是类似 【23. 合并 K 个升序链表】
- 题目内容
给你一个链表数组,每个链表都已经按升序排列。
请你将所有链表合并到一个升序链表中,返回合并后的链表。
示例 1:
示例 2:
输入:lists = []
输出:[]
示例 3:
输入:lists = [[]]
输出:[]
-
提示:
-
- k == lists.length
- 0 <= k <= 10^4
- 0 <= lists[i].length <= 500
- -10^4 <= lists[i][j] <= 10^4
- lists[i] 按 升序 排列
- lists[i].length 的总和不超过 10^4
-
题目解答
3. 技术问题回答
- llama2中使用的注意力机制是什么?手写实现下分组注意力。
- 了解langchain吗?讲讲其结构。
- 对位置编码熟悉吗?讲讲几种位置编码的异同
- RLHF的具体工程是什么?包含了哪几个模型?
- 分别讲讲 encoder-only、decoder-only、encoder-decoder 几种大模型的代表作。
- 具体讲讲 p-tuning、lora 等微调方法,并指出它们与传统fine-tuning微调有何不同。
- 显存不够一般怎么解决的?
- 几种主流大模型的 loss 了解过吗? 有哪些异同?
- 了解半精度训练吗?展开讲讲。
- deepspeed 用过吗? 展开讲讲。
注:我回答了大部分问题,但仍有部分问题回答不够准确。后期会总结一下,然后重新写一下上面的面试题,并贴到 留言栏!!!
个人本次面试总结
- 很多题目非常强调实践,没有做过大模型的项目且没有针对性准备过,很难回答上。
- 大模型微调是很多公司的考察重点。
- 几种模型的注意力机制、位置编码要熟悉。
- 4.RLHF的几步多熟悉熟悉
如何学习大模型
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍
四、AI大模型各大场景实战案例
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。