锥(Cone)

1.锥(Cone)

定义:

在凸优化中,是指一个满足以下条件的集合 K ⊆ R n K \subseteq \mathbb{R}^n KRn

  • 对于任意 x ∈ K x \in K xK 和非负实数 λ ≥ 0 \lambda \geq 0 λ0,都有 λ x ∈ K \lambda x \in K λxK

也就是说,如果一个向量在锥中,那么其所有非负倍数也在锥中。

直观理解:

  • 锥是一个对原点封闭的集合,包含所有沿某些方向延伸的非负倍数。
  • 想象在空间中,一个以原点为顶点、向外无限延伸的“锥形”区域。

举例:

  • 非负正交锥(Non-negative Orthant):所有分量非负的向量组成的集合,即 K = { x ∈ R n ∣ x i ≥ 0 , ∀ i } K = \{ x \in \mathbb{R}^n \mid x_i \geq 0, \forall i \} K={xRnxi0,i}
  • 零向量的锥:仅包含原点 { 0 } \{0\} {0} 的集合,也是一个锥。

2.锥组合(Conic Combination)

定义:

给定一组向量 { x 1 , x 2 , … , x k } \{ x_1, x_2, \dots, x_k \} {x1,x2,,xk},它们的锥组合是指所有形式为
y = λ 1 x 1 + λ 2 x 2 + ⋯ + λ k x k y = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k y=λ1x1+λ2x2++λkxk
的向量,其中每个系数 λ i ≥ 0 \lambda_i \geq 0 λi0

  • 锥组合是使用非负系数对向量进行线性组合。
  • 与凸组合不同的是,锥组合对系数之和没有限制,不要求系数之和为1。

举例:

  • 单个向量的锥组合:对于一个向量 x x x,其锥组合是所有 λ x \lambda x λx,其中 λ ≥ 0 \lambda \geq 0 λ0
  • 两个向量的锥组合:若 x 1 x_1 x1 x 2 x_2 x2 不共线,那么它们的锥组合填充了从原点开始、由 x 1 x_1 x1 x 2 x_2 x2 张成的平面内的一个扇形区域。

3.锥包(Cone Hull)

定义:

给定一个点集 S ⊆ R n S \subseteq \mathbb{R}^n SRn,其锥包(有时也称为生成锥)是所有 S S S​中点的锥组合构成的集合。表示为:
cone ( S ) = { ∑ i = 1 k λ i x i ∣ x i ∈ S , λ i ≥ 0 , k ∈ N } \text{cone}(S) = \left\{ \sum_{i=1}^k \lambda_i x_i \mid x_i \in S, \lambda_i \geq 0, k \in \mathbb{N} \right\} cone(S)={i=1kλixixiS,λi0,kN}

  • 锥包是包含 S S S 并由 S S S 生成的最小锥。
  • 它是通过将 S S S 中的向量进行非负缩放和相加所得到的所有向量的集合。

举例:

  • 零向量的锥包:如果 S = { 0 } S = \{0\} S={0},那么 cone ( S ) = { 0 } \text{cone}(S) = \{0\} cone(S)={0}
  • 标准基向量的锥包:取 S S S 为标准基向量 e 1 , e 2 , … , e n e_1, e_2, \dots, e_n e1,e2,,en,则 cone ( S ) \text{cone}(S) cone(S)是非负正交锥。

形象化理解

  1. 锥(Cone)
    • 想象手电筒的光束从原点发出,照亮前方的一片区域,这个区域就是一个锥。
    • 在二维空间中,锥可以看作是从原点开始、向某个方向无限延伸的角。
  2. 锥组合(Conic Combination)
    • 你有多根箭头(向量),只能对它们进行非负的缩放和相加,不能改变方向(除非系数为零)。
    • 这类似于在做菜时,只能增加食材的量,不能减少或中和。
  3. 锥包(Cone Hull)
    • 将所有可能的锥组合结果集合在一起,就得到了锥包。
    • 想象用 S S S 中的向量作为“生成器”,构建出整个锥形结构。

与其他组合方式的区别

  • 线性组合:系数 λ i \lambda_i λi 可以是任意实数。
  • 凸组合:系数 λ i ≥ 0 \lambda_i \geq 0 λi0,且 ∑ i = 1 k λ i = 1 \sum_{i=1}^k \lambda_i = 1 i=1kλi=1
  • 锥组合:系数 λ i ≥ 0 \lambda_i \geq 0 λi0,但对系数之和没有限制。

总结

  • 是一个对于非负缩放封闭的集合。
  • 锥组合是使用非负系数对向量进行的线性组合。
  • 锥包是包含所有锥组合的集合,即由给定点集生成的最小锥。

实例分析

例1:二维空间中的锥

  • S = { x 1 , x 2 } S = \{ x_1, x_2 \} S={x1,x2},其中 x 1 x_1 x1 x 2 x_2 x2 是二维空间中不共线的向量。
  • 它们的锥包 cone ( S ) \text{cone}(S) cone(S) 是一个以原点为顶点的扇形区域,包含所有由 x 1 x_1 x1 x 2 x_2 x2 的非负组合得到的向量。

例2:非负正交锥

  • R n \mathbb{R}^n Rn 中,非负正交锥由所有分量非负的向量组成。
  • 这是标准基向量的锥包,因为任何非负向量都可以表示为标准基向量的非负组合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xy_optics

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值