113 深入解析`QueryFusionRetriever`类中的倒数排名融合方法 llamaindex.core.retrievers

深入解析QueryFusionRetriever类中的倒数排名融合方法

在信息检索系统中,如何有效地融合多个检索器的输出结果是一个关键问题。QueryFusionRetriever类提供了_reciprocal_rerank_fusion方法,用于应用倒数排名融合(Reciprocal Rank Fusion, RRF)技术。本文将详细解析该方法,帮助您更好地理解其工作原理及实际应用。

前置知识

在深入代码之前,我们需要了解以下几个关键概念:

  1. 倒数排名融合(RRF):一种用于融合多个检索器结果的算法,通过计算每个文档在不同检索器中的倒数排名来确定最终排名。
  2. 节点(Node):表示检索结果中的一个文档或信息片段。
  3. 节点评分(NodeWithScore):包含节点及其评分的封装对象。

代码解析

_reciprocal_rerank_fusion方法

def _reciprocal_rerank_fusion(
        self, results: Dict[Tuple[str, int], List[NodeWithScore]]
    ) -> List[NodeWithScore]:
    """
    Apply reciprocal rank fusion.

    The original paper uses k=60 for best results:
    https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf
    """
    k = 60.0  # `k` is a parameter used to control the impact of outlier rankings.
    fused_scores = {
   }
    hash_to_node = {
   }

    # compute reciprocal rank scores
    for nodes_with_scores in results.values():
        for rank, node_with_score in enumerate(
            sorted(nodes_with_scores, key=lambda x: x.score or 0.0, reverse
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

需要重新演唱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值