113 深入解析`QueryFusionRetriever`类中的倒数排名融合方法 llamaindex.core.retrievers

深入解析QueryFusionRetriever类中的倒数排名融合方法

在信息检索系统中,如何有效地融合多个检索器的输出结果是一个关键问题。QueryFusionRetriever类提供了_reciprocal_rerank_fusion方法,用于应用倒数排名融合(Reciprocal Rank Fusion, RRF)技术。本文将详细解析该方法,帮助您更好地理解其工作原理及实际应用。

前置知识

在深入代码之前,我们需要了解以下几个关键概念:

  1. 倒数排名融合(RRF):一种用于融合多个检索器结果的算法,通过计算每个文档在不同检索器中的倒数排名来确定最终排名。
  2. 节点(Node):表示检索结果中的一个文档或信息片段。
  3. 节点评分(NodeWithScore):包含节点及其评分的封装对象。

代码解析

_reciprocal_rerank_fusion方法

def _reciprocal_rerank_fusion(
        self, results: Dict[Tuple[str, int], List[NodeWithScore]]
    ) -> List[NodeWithScore]:
    """
    Apply reciprocal rank fusion.

    The original paper uses k=60 for best results:
    https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf
    """
    k = 60.0  # `k` is a parameter used to control the impact of outlier rankings.
    fused_scores = {}
    hash_to_node = {}

    # compute reciprocal rank scores
    for nodes_with_scores in results.values():
        for rank, node_with_score in enumerate(
            sorted(nodes_with_scores, key=lambda x: x.score or 0.0, reverse=True)
        ):
            hash = node_with_score.node.hash
            hash_to_node[hash] = node_with_score
            if hash not in fused_scores:
                fused_scores[hash] = 0.0
            fused_scores[hash] += 1.0 / (rank + k)

    # sort results
    reranked_results = dict(
        sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)
    )

    # adjust node scores
    reranked_nodes: List[NodeWithScore] = []
    for hash, score in reranked_results.items():
        reranked_nodes.append(hash_to_node[hash])
        reranked_nodes[-1].score = score

    return reranked_nodes
方法解析
  • 功能:该方法应用倒数排名融合技术,对多个检索器的输出结果进行重新排序。
  • 参数results,一个字典,键为(str, int)元组,值为NodeWithScore列表,表示每个检索器的输出结果。
  • 返回值:一个包含重新排序后的NodeWithScore实例的列表。
处理流程
  1. 初始化参数

    k = 60.0
    fused_scores = {}
    hash_to_node = {}
    

    k是控制离群排名影响的参数,fused_scores用于存储融合后的评分,hash_to_node用于存储节点哈希到节点的映射。

  2. 计算倒数排名评分

    for nodes_with_scores in results.values():
        for rank, node_with_score in enumerate(
            sorted(nodes_with_scores, key=lambda x: x.score or 0.0, reverse=True)
        ):
            hash = node_with_score.node.hash
            hash_to_node[hash] = node_with_score
            if hash not in fused_scores:
                fused_scores[hash] = 0.0
            fused_scores[hash] += 1.0 / (rank + k)
    

    遍历每个检索器的输出结果,按评分降序排序,计算每个节点的倒数排名评分,并累加到fused_scores中。

  3. 排序结果

    reranked_results = dict(
        sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)
    )
    

    将融合后的评分按降序排序,得到重新排序的结果。

  4. 调整节点评分

    reranked_nodes: List[NodeWithScore] = []
    for hash, score in reranked_results.items():
        reranked_nodes.append(hash_to_node[hash])
        reranked_nodes[-1].score = score
    

    根据重新排序的结果,调整节点的评分,并生成最终的重新排序后的节点列表。

实际应用示例

假设我们有多个检索器的输出结果,需要应用倒数排名融合技术进行重新排序:

from some_module import QueryFusionRetriever, NodeWithScore

# 初始化QueryFusionRetriever实例
fusion_retriever = QueryFusionRetriever(...)

# 假设我们有多个检索器的输出结果
results = {
    ("retriever1", 0): [NodeWithScore(node=..., score=0.8), NodeWithScore(node=..., score=0.7)],
    ("retriever2", 0): [NodeWithScore(node=..., score=0.9), NodeWithScore(node=..., score=0.6)],
}

# 应用倒数排名融合技术
reranked_results = fusion_retriever._reciprocal_rerank_fusion(results)

# 输出生成的查询
for node_with_score in reranked_results:
    print(f"Node: {node_with_score.node}, Score: {node_with_score.score}")

总结

通过本文的详细解析,我们深入理解了QueryFusionRetriever类中倒数排名融合方法的实现原理和应用方法。该方法通过计算每个文档在不同检索器中的倒数排名,有效地融合多个检索器的输出结果,从而提升检索系统的准确性和全面性。希望本文能为您的编程实践提供有益的参考和帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

需要重新演唱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值