深入解析QueryFusionRetriever
类中的倒数排名融合方法
在信息检索系统中,如何有效地融合多个检索器的输出结果是一个关键问题。QueryFusionRetriever
类提供了_reciprocal_rerank_fusion
方法,用于应用倒数排名融合(Reciprocal Rank Fusion, RRF)技术。本文将详细解析该方法,帮助您更好地理解其工作原理及实际应用。
前置知识
在深入代码之前,我们需要了解以下几个关键概念:
- 倒数排名融合(RRF):一种用于融合多个检索器结果的算法,通过计算每个文档在不同检索器中的倒数排名来确定最终排名。
- 节点(Node):表示检索结果中的一个文档或信息片段。
- 节点评分(NodeWithScore):包含节点及其评分的封装对象。
代码解析
_reciprocal_rerank_fusion
方法
def _reciprocal_rerank_fusion(
self, results: Dict[Tuple[str, int], List[NodeWithScore]]
) -> List[NodeWithScore]:
"""
Apply reciprocal rank fusion.
The original paper uses k=60 for best results:
https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf
"""
k = 60.0 # `k` is a parameter used to control the impact of outlier rankings.
fused_scores = {
}
hash_to_node = {
}
# compute reciprocal rank scores
for nodes_with_scores in results.values():
for rank, node_with_score in enumerate(
sorted(nodes_with_scores, key=lambda x: x.score or 0.0, reverse