深入解析QueryFusionRetriever
类中的倒数排名融合方法
在信息检索系统中,如何有效地融合多个检索器的输出结果是一个关键问题。QueryFusionRetriever
类提供了_reciprocal_rerank_fusion
方法,用于应用倒数排名融合(Reciprocal Rank Fusion, RRF)技术。本文将详细解析该方法,帮助您更好地理解其工作原理及实际应用。
前置知识
在深入代码之前,我们需要了解以下几个关键概念:
- 倒数排名融合(RRF):一种用于融合多个检索器结果的算法,通过计算每个文档在不同检索器中的倒数排名来确定最终排名。
- 节点(Node):表示检索结果中的一个文档或信息片段。
- 节点评分(NodeWithScore):包含节点及其评分的封装对象。
代码解析
_reciprocal_rerank_fusion
方法
def _reciprocal_rerank_fusion(
self, results: Dict[Tuple[str, int], List[NodeWithScore]]
) -> List[NodeWithScore]:
"""
Apply reciprocal rank fusion.
The original paper uses k=60 for best results:
https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf
"""
k = 60.0 # `k` is a parameter used to control the impact of outlier rankings.
fused_scores = {}
hash_to_node = {}
# compute reciprocal rank scores
for nodes_with_scores in results.values():
for rank, node_with_score in enumerate(
sorted(nodes_with_scores, key=lambda x: x.score or 0.0, reverse=True)
):
hash = node_with_score.node.hash
hash_to_node[hash] = node_with_score
if hash not in fused_scores:
fused_scores[hash] = 0.0
fused_scores[hash] += 1.0 / (rank + k)
# sort results
reranked_results = dict(
sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)
)
# adjust node scores
reranked_nodes: List[NodeWithScore] = []
for hash, score in reranked_results.items():
reranked_nodes.append(hash_to_node[hash])
reranked_nodes[-1].score = score
return reranked_nodes
方法解析
- 功能:该方法应用倒数排名融合技术,对多个检索器的输出结果进行重新排序。
- 参数:
results
,一个字典,键为(str, int)
元组,值为NodeWithScore
列表,表示每个检索器的输出结果。 - 返回值:一个包含重新排序后的
NodeWithScore
实例的列表。
处理流程
-
初始化参数:
k = 60.0 fused_scores = {} hash_to_node = {}
k
是控制离群排名影响的参数,fused_scores
用于存储融合后的评分,hash_to_node
用于存储节点哈希到节点的映射。 -
计算倒数排名评分:
for nodes_with_scores in results.values(): for rank, node_with_score in enumerate( sorted(nodes_with_scores, key=lambda x: x.score or 0.0, reverse=True) ): hash = node_with_score.node.hash hash_to_node[hash] = node_with_score if hash not in fused_scores: fused_scores[hash] = 0.0 fused_scores[hash] += 1.0 / (rank + k)
遍历每个检索器的输出结果,按评分降序排序,计算每个节点的倒数排名评分,并累加到
fused_scores
中。 -
排序结果:
reranked_results = dict( sorted(fused_scores.items(), key=lambda x: x[1], reverse=True) )
将融合后的评分按降序排序,得到重新排序的结果。
-
调整节点评分:
reranked_nodes: List[NodeWithScore] = [] for hash, score in reranked_results.items(): reranked_nodes.append(hash_to_node[hash]) reranked_nodes[-1].score = score
根据重新排序的结果,调整节点的评分,并生成最终的重新排序后的节点列表。
实际应用示例
假设我们有多个检索器的输出结果,需要应用倒数排名融合技术进行重新排序:
from some_module import QueryFusionRetriever, NodeWithScore
# 初始化QueryFusionRetriever实例
fusion_retriever = QueryFusionRetriever(...)
# 假设我们有多个检索器的输出结果
results = {
("retriever1", 0): [NodeWithScore(node=..., score=0.8), NodeWithScore(node=..., score=0.7)],
("retriever2", 0): [NodeWithScore(node=..., score=0.9), NodeWithScore(node=..., score=0.6)],
}
# 应用倒数排名融合技术
reranked_results = fusion_retriever._reciprocal_rerank_fusion(results)
# 输出生成的查询
for node_with_score in reranked_results:
print(f"Node: {node_with_score.node}, Score: {node_with_score.score}")
总结
通过本文的详细解析,我们深入理解了QueryFusionRetriever
类中倒数排名融合方法的实现原理和应用方法。该方法通过计算每个文档在不同检索器中的倒数排名,有效地融合多个检索器的输出结果,从而提升检索系统的准确性和全面性。希望本文能为您的编程实践提供有益的参考和帮助。