使用Llama Index构建和查询知识图谱:全面指南
在人工智能和数据科学的不断发展中,知识图谱已成为组织和查询复杂信息的强大工具。知识图谱是一种结构化的实体及其关系的表示,使得理解和检索信息变得更加容易。在本篇博客中,我们将深入探讨如何使用Llama Index的KnowledgeGraphIndex
从非结构化文本中自动构建知识图谱,并进行基于实体的查询。
前置知识
在深入代码之前,确保你具备以下基础知识:
- Python基础:熟悉Python编程。
- OpenAI API密钥:你需要一个OpenAI API密钥来使用
OpenAI
模型。 - Llama Index:使用
pip install llama-index-llms-openai
安装Llama Index库。
环境设置
首先,让我们通过安装所需的包并配置OpenAI API密钥来设置环境。
# 安装Llama Index
%pip install llama-index-llms-openai
# 设置OpenAI API密钥
import os
os.environ["OPENAI_API_KEY"] = "INSERT OPENAI KEY"
# 配置日志
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
构建知识图谱
加载文档
要构建知识图谱,我们首先需要加载一些非结构化文本文档。Llama Index提供了SimpleDirectoryReader
来从目录中加载文档。
from llama_index.core import SimpleDirectoryReader, KnowledgeGraphIndex
from llama_index.core.graph_stores import SimpleGraphStore
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
# 加载文档
documents = SimpleDirectoryReader(
"../../../../examples/paul_graham_essay/data"
).load_data()
初始化语言模型
接下来,我们初始化OpenAI语言模型。该模型将帮助我们从文本中理解和提取关系。