148 使用Llama Index构建和查询知识图谱:全面指南

使用Llama Index构建和查询知识图谱:全面指南

在人工智能和数据科学的不断发展中,知识图谱已成为组织和查询复杂信息的强大工具。知识图谱是一种结构化的实体及其关系的表示,使得理解和检索信息变得更加容易。在本篇博客中,我们将深入探讨如何使用Llama Index的KnowledgeGraphIndex从非结构化文本中自动构建知识图谱,并进行基于实体的查询。

前置知识

在深入代码之前,确保你具备以下基础知识:

  1. Python基础:熟悉Python编程。
  2. OpenAI API密钥:你需要一个OpenAI API密钥来使用OpenAI模型。
  3. Llama Index:使用pip install llama-index-llms-openai安装Llama Index库。

环境设置

首先,让我们通过安装所需的包并配置OpenAI API密钥来设置环境。

# 安装Llama Index
%pip install llama-index-llms-openai

# 设置OpenAI API密钥
import os
os.environ["OPENAI_API_KEY"] = "INSERT OPENAI KEY"

# 配置日志
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

构建知识图谱

加载文档

要构建知识图谱,我们首先需要加载一些非结构化文本文档。Llama Index提供了SimpleDirectoryReader来从目录中加载文档。

from llama_index.core import SimpleDirectoryReader, KnowledgeGraphIndex
from llama_index.core.graph_stores import SimpleGraphStore
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings

# 加载文档
documents = SimpleDirectoryReader(
    "../../../../examples/paul_graham_essay/data"
).load_data()

初始化语言模型

接下来,我们初始化OpenAI语言模型。该模型将帮助我们从文本中理解和提取关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

需要重新演唱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值