151 深入探索Llama Index中的知识图谱数据结构

深入探索Llama Index中的知识图谱数据结构

在现代数据科学和人工智能领域,知识图谱(Knowledge Graph)已成为处理复杂信息的重要工具。知识图谱通过结构化的方式表示实体及其关系,使得信息的检索和理解变得更加高效。本文将深入探讨Llama Index中的KnowledgeGraphIndex数据结构,帮助程序员全面理解其工作原理及实际应用。

前置知识

在开始之前,确保你具备以下基础知识:

  1. Python基础:熟悉Python编程。
  2. OpenAI API密钥:你需要一个OpenAI API密钥来使用OpenAI模型。
  3. Llama Index:使用pip install llama-index安装Llama Index库。

环境设置

首先,让我们通过安装所需的包并配置OpenAI API密钥来设置环境。

# 安装Llama Index
%pip install llama-index

# 设置OpenAI API密钥
import os
os.environ["OPENAI_API_KEY"] = "sk-..."

# 配置日志
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

KnowledgeGraphIndex概述

KnowledgeGraphIndex是Llama Index中的一个核心数据结构,用于构建和查询知识图谱。它通过提取三元组(triplets)并利用这些三元组在查询时构建知识图谱。

参数说明

参数名 类型 描述 默认值
kg_triplet_extract_template BasePromptTemplate 用于提取三元组的提示模板。 None
max_triplets_per_chunk int 每个块中提取的最大三元组数量。 10
storage_context Optional[StorageContext] 存储上下文。 None
graph_store Optional[GraphStore] 图存储。 必需
show_progress bool 是否显示tqdm进度条。 False
include_embeddings bool 是否在索引中包含嵌入。 False
max_object_length int 三元组中对象的最大长度。 128
kg_triplet_extract_fn Optional[Callable] 用于提取三元组的函数。 None

主要方法

ref_doc_info属性

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

需要重新演唱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值