使用Llama Index构建和查询知识图谱:从入门到精通
在现代数据科学和人工智能领域,知识图谱已成为处理复杂信息的重要工具。知识图谱通过结构化的方式表示实体及其关系,使得信息的检索和理解变得更加高效。本文将深入探讨如何使用Llama Index的KnowledgeGraphIndex
和KnowledgeGraphQueryEngine
从非结构化数据源中构建知识图谱,并使用自然语言进行查询。
前置知识
在开始之前,确保你具备以下基础知识:
- Python基础:熟悉Python编程。
- OpenAI API密钥:你需要一个OpenAI API密钥来使用
OpenAI
模型。 - Llama Index:使用
pip install llama-index
安装Llama Index库。
环境设置
首先,让我们通过安装所需的包并配置OpenAI API密钥来设置环境。
# 安装Llama Index
%pip install llama-index-readers-wikipedia
%pip install llama-index-llms-azure-openai
%pip install llama-index-graph-stores-nebula
%pip install llama-index-llms-openai
%pip install llama-index-embeddings-azure-openai
!pip install llama-index
# 设置OpenAI API密钥
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
# 配置日志
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
初始化Llama Index
使用OpenAI
# 定义LLM
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(temperature=