3D目标检测方法TED复现:Transformation-Equivariant 3D Object Detection for Autonomous Driving

论文链接:[2211.11962] Transformation-Equivariant 3D Object Detection for Autonomous Driving

项目地址:hailanyi/TED: Transformation-Equivariant 3D Object Detection for Autonomous Driving

写在前面:原项目在V100和3090上测试,但是推荐的cuda11.1不支持4090

1.复现环境:

  • Ubuntu 20.04
  • Python 3.9.21
  • PyTorch 2.6.0
  • Spconv 2.3.8
  • NVIDIA CUDA 11.8
  • 4090 GPU

2.环境配置:

conda create -n spconv2 python=3.9

conda activate spconv2

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

pip install numpy==1.19.5 protobuf==3.19.4 scikit-image==0.19.2 nuscenes-devkit==1.0.5 numba==0.56.4 open3d==0.16.0 scipy pyyaml easydict fire tqdm shapely matplotlib opencv-python addict pyquaternion awscli pandas future pybind11 tensorboardX tensorboard Cython prefetch-generator spconv-cu118 

pip install tensorflow==2.5.0 --index-url https://mirrors.aliyun.com/pypi/simple/

pip install keras-nightly==2.5.0.dev --index-url https://mirrors.aliyun.com/pypi/simple/

pip install waymo-open-dataset-tf-2-5-0

接下来就和github上的README一样啦!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值