第5章 特征值与特征向量

本笔记是对李永乐《线性代数辅导讲义》中各章节涉及的基础知识进行整理。本笔记主要用以应对夏令营面试中可能会问到的线性代数方面的问题,比较泛泛而谈,如果您对这些内容感兴趣,建议参考原书。大佬可自行绕路

更多章节内容参见:保研复习——线性代数篇-CSDN博客

目录

思维导图一:

思维导图二:

特征值与特征向量的基本概念:

特征值与特征向量:

特征多项式和特征方程:

相似、可对角化、相似的性质:

重要定理:

例题:

填空:

1)由矩阵A的特征方程式的秩求A的特征值

2)求矩阵的特征值及其对应的特征向量

3)求矩阵A的伴随矩阵的特征值以及与A相关的行列式

4)已知矩阵的秩、每行之和等条件求矩阵的特征值

计算:

1)矩阵A和对角矩阵相似求未知参数以及可逆变换矩阵

2)求矩阵A的特征值、特征向量、正交变换矩阵、对角矩阵

3)由特殊条件求矩阵A


思维导图一:

思维导图二:

特征值与特征向量的基本概念:

特征值与特征向量:

特征多项式和特征方程:

相似、可对角化、相似的性质:

重要定理:

例题:

填空:

1)由矩阵A的特征方程式的秩求A的特征值

结合上述两个定理,可以推导得出:若Ax=0有n-R(A)个线性无关的解向量,则该特征值至少是n-R(A)重的。根据题目的条件,即可知道矩阵A的特征值。

2)求矩阵的特征值及其对应的特征向量

先列出特征方程求出对应的特征值

然后将特征值回代进去,其余步骤就和第4章 求线性方程组的基础解系步骤一致,将左侧尽可能化为单位矩阵,这样基础解系就是右侧列r(λE-A)行取反然后拼接上基础单位向量。

不能通过行变换将左侧的n-r(A)阶矩阵化为单位矩阵的话,那就尽可能化为简化行阶梯型矩阵,相应的求法和第4章的1)保持一致

这样就得到了一个特征向量,如果想要表示该特征值的所有特征向量,可以再前面加一个系数,但是系数不能为0.

3)求矩阵A的伴随矩阵的特征值以及与A相关的行列式

矩阵发生了什么变化,那么特征值也相对地发生什么变化

4)已知矩阵的秩、每行之和等条件求矩阵的特征值

若一个矩阵的每行之和都相同等于k,由定义可知,那么k就是该矩阵的一个特征值

计算:

1)矩阵A和对角矩阵相似求未知参数以及可逆变换矩阵

  1. 首先观察对角矩阵,因为A的主对角线上元素之和等于A的对角矩阵的主对角线上元素之和,所以可以很容易确定z;
  2. 接着观察A的对角矩阵,其特征指为4,-3,4,所以特征值4是二重特征值,相应的,有R(A-4E)=1,那么将该A-4E进行行变换化简然后便可以求得x和y。
  3. 那么P怎么求呢?P其实就是由特征向量组成的(注意其中特征向量的顺序要和特征值的顺序保持一致)。
  4. 所以既然已经求得了4的特征向量,那么再求关于-3的特征向量即可,求法就是之前齐次线性方程组求基础解系的方法。

2)求矩阵A的特征值、特征向量、正交变换矩阵、对角矩阵

  1. 特征值和特征向量的求法就不再赘述了。
  2. 正交矩阵怎么求呢?之前我们提到过可逆变换矩阵是将矩阵A变为对角矩阵的一个矩阵。
  3. 那么现在正交变换矩阵达成的也是这个效果,不同之处在于正交变换矩阵相较于可逆变换矩阵是正交的,因此就需要用到Schmidt正交化方法对P进行正交化

正交化的方法如下所示:

对角矩阵就是主对角线上全放上特征值,这个没啥好说的。 

3)由特殊条件求矩阵A

根据题目中的条件可以得到全部的特征值和特征向量

所以本题就转化为了已知全部的特征值(对角矩阵)和特征向量(可逆变换矩阵P)求A的过程

也即:

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值