文献阅读记录(三十五)2023-08-27

论文题目:Inductive Relation prediction by subgraph Reasoning(子图推理的归纳关系预测)

基于嵌入的模型。如前所述,大多数现有的KG补全方法都属于基于嵌入的范式。RotateE、complEx、convE和TransE是为训练集中的每个节点训练浅嵌入的一些代表性方法,使得这些低维嵌入可以检索图的关系信息,本文方法体现了一种可供选择的归纳偏见来显式编码结构规则。此外,虽然框架是自然归纳的,但调整嵌入方法以在归纳设置中进行预测需要对新节点的嵌入进行的重新训练。

R-GcN模型使用GNN来执行关系预测。尽管最初提出的这种方法本质上是转导的,但如果给定一些节点特征,它就有可能产生归纳能力,而本文将关系预测视为子图推理问题

感应嵌入。为看不见的节点生成嵌入已经有了很有前途的工作,尽管它们在某些方面是有限的。依赖于在许多KG中不存在的节点特征,通过使用GNN聚合相邻节点嵌入,学习为看不见的节点生成嵌入。然而,这两种方法都需要新节点被已知节点包围,并且不能处理全新的图

规则归纳方法。与基于嵌入的方法不同,统计规则挖掘方法通过枚举知识图中存在的统计规律和模式来诱导概率逻辑规则。这些方法本质上是归纳的,这些方法本质上是归纳的,因为规则与节点身份无关,但这些方法存在可扩展性问题,并且由于其基于规则的性质而缺乏表达能力。受这些统计规则归纳方法的启发,NeuralLP模型使用TensorLog算子以端到端可微的方式从KGs学习逻辑规则。在NeuralLP的基础上,最近提出了DRUM,它可以学习更准确的规则,这套方法构成了在归纳环境中的基线。

使用GNN的链路预测。最后,在KG文献之外,从理论上证明了GNN可以学习用于简单图中链接预测的常见图启发式方法。之前有人也使用了类似的方法来实现归纳矩阵完备的竞争结果。本文提出的方法可以解释为上述方法的有向多关系知识图方法的扩展。


本文的关键思想是从围绕两个节点的子图结构预测两个节点之间的关系,方法是围绕图神经网络(GNN) 来展开,没有使用任何节点属性,以便测试GraIL仅从结构上学习和泛化的能力。

由于它永远只接收结构信息(即子图结构和结构节点特征)作为输入,因此GraIL能够完成关系预测任务的唯一方式是学习知识图谱背后的结构语义。

整体任务是对一个三元组(u,rt,v)进行评分,即预测KG中头节点u和尾节点v之间可能存在关系rt的可能性,其中将节点u和v称为目标节点,将rt称为目标关系。对这样的三元组进行评分的方法可以大致分为三个子任务:

1.提取目标节点周围的封闭子图。

2.标记提取的子图中的节点。

3.使用 GNN对标记的子图进行评分。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值