文献阅读记录(三十四)2023-08-26

本文介绍了一种新的关系预测框架GraIL,它利用图神经网络从子图结构中推理关系,无需依赖实体嵌入,从而更好地捕捉关系语义并实现归纳。与基于嵌入的方法相比,GraIL在逻辑归纳和扩展性上有优势,尤其适合动态变化的知识图谱。
摘要由CSDN通过智能技术生成

论文题目:Inductive Relation prediction by subgraph Reasoning(子图推理的归纳关系预测)

问题:知识图谱中关系预测的主导范式涉及对实体和关系的潜在表征(即嵌入)的学习和操作。这些基于嵌入的方法并没有明确地捕捉知识图谱背后的组成逻辑规则,并且仅限于转导设置,在该设置中,在训练过程中必须知道完整的实体集

方法:提出了一个基于图神经网络的关系预测框架GraIL,该框架推理了局部子图结构,并且在学习与实体无关的关系语义时具有很强的归纳偏见。相较于基于嵌入的模型,GraIL是自然归纳的,并且可以在训练后推广到看不见的实体和图。


知识图谱(KGs)是一组事实的集合,它们指定了一组实体(作为节点)之间的关系(作为边)。预测KGs中缺失的事实——通常被定义为两个实体之间的关系预测。近年来最主要的范式是学习和操作实体和关系的潜在表征(即嵌入)。这些方法将每个实体的邻域连接模式压缩为实体特定的低维嵌入,然后可用于预测缺失的边。例如,LeBronA·Davis的嵌入将包含他们 都是湖人队的一部分的信息,稍后可以检索这些信息 来预测他们是队友。同样,任何与湖人密切相关的人都将以高概率居住在洛杉矶。基于嵌入的方法通过利用这种局部连接模式和同质性而获得了巨大的成功。

问题:尚不清楚它们是否有效地捕获了知识图的关系语义,即知识图底层关系之间的逻辑规则。

方法:关系预测任务也可以被视为一个逻辑归纳问题,在这个问题中,人们试图推导出给定KG的概率逻辑规则,例如从上述例子可以推断出简单规则:

\exists Y.(X,spouse\_of,Y)\wedge (Y,lives\_in,Z)\rightarrow (X,lives\_in,Z)

依照这个规则,上诉例子可以预测出关系(A.Davis,livesin,L.A)。当基于嵌入的方法将实体特定的邻居信息编码到嵌入中时,这些逻辑规则捕获与实体无关的关系语义。

学习与实体无关的关系语义的一个关键优势是能够归纳出看不见的实体。例如,上述中的公式可以自然地推广到图C中看不见的KG,并预测关系(S.Curry,livesin,California)。

基于嵌入的方法本质上假设图中有一组固定的实体——这一假设通常被称为转导设置,在许多情况下,需要寻求具有诱导独立于实体的逻辑规则所提供的诱导能力的算法。

问题:许多现实世界中的KGs都在不断发展,随着时间的推移,新的节点或实体不断增加。尽管规则归纳方法具有这一关键优势,但它们存在可扩展性问题,并且缺乏基于嵌入的方法的表达能力。

方法:提出了一种图神经网络(GNN)框架,该框架在学习独立于实体的关系语义方面具有强烈的归纳偏见。从候选关系周围的子图结构预测关系,而不是学习实体特定嵌入。

 本文的关键思想是从围绕两个节点的子图结构预测两个节点之间的关系,方法是围绕图神经网络(GNN) 来展开,没有使用任何节点属性,以便测试GraIL仅从结构上学习和泛化的能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值