一种基于稀疏约束的实波束扫描雷达角超分辨成像方法——论文阅读

1. 专利的研究目标与实际问题意义

研究目标
专利旨在解决实波束扫描雷达Real Beam Scanning Radar)在方位向分辨率受限于天线物理孔径尺寸的问题,提出一种基于稀疏约束(Sparse Constraint)和瑞利分布(Rayleigh Distribution)的超分辨成像方法,突破传统方法的噪声敏感性和分辨率限制。核心目标是通过贝叶斯框架下的最大后验概率Maximum A Posteriori, MAP)反演,结合稀疏先验与噪声统计特性,实现低信噪比(Low Signal-to-Noise Ratio, SNR)环境下的高精度成像。

实际问题与产业意义
实波束扫描雷达在军事(如对海探测)和民用领域(如航空导航)需高分辨成像能力,但传统方法面临两大挑战:

  1. 分辨率限制:方位向分辨率由波长和天线尺寸决定( θ ∝ λ / D \theta \propto \lambda/D θλ/D),硬件提升成本高昂。
  2. 噪声敏感性:现有方法(如截断奇异值分解TSVD、自适应迭代方法IAA)在低SNR下成像质量差或计算复杂度高。
    专利通过稀疏约束与瑞利分布的联合建模,显著提升抗噪能力和分辨率,对复杂电磁环境下的雷达系统具有重要应用价值。

2. 专利提出的新方法、模型与公式

2.1 回波建模与卷积反演框架

关键步骤

  1. 回波信号建模
    雷达发射线性调频信号(Linear Frequency Modulation, LFM),接收回波经脉冲压缩和距离走动校正后,转化为卷积形式:

    s ( θ , τ ) = ∑ ( x , y ) ∈ Ω f ( x i , y i ) ⋅ w ( θ − θ i T β ) ⋅ rect ( τ − 2 r i c ) ⋅ exp ⁡ ( − j 4 π λ r i ) + n ( θ , τ ) s(\theta,\tau)=\sum_{(x, y)\in\Omega} f(x_i, y_i)\cdot w\left(\frac{\theta-\theta_i}{T_\beta}\right)\cdot \text{rect}\left(\tau-\frac{2r_i}{c}\right)\cdot \exp\left(-j\frac{4\pi}{\lambda} r_i\right) + n(\theta,\tau) s(θ,τ)=(x,y)Ωf(xi,yi)w(Tβθθi)rect(τc2ri)exp(jλ4πri)+n(θ,τ)

    其中, f ( x i , y i ) f(x_i,y_i) f(xi,yi)为目标散射系数, w ( ⋅ ) w(\cdot) w()为天线方向图函数, T β T_\beta Tβ为波束驻留时间, n ( θ ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值