一种基于稀疏约束的实波束扫描雷达角超分辨成像方法
1. 专利的研究目标与实际问题意义
研究目标:
专利旨在解决实波束扫描雷达(Real Beam Scanning Radar)在方位向分辨率受限于天线物理孔径尺寸的问题,提出一种基于稀疏约束(Sparse Constraint)和瑞利分布(Rayleigh Distribution)的超分辨成像方法,突破传统方法的噪声敏感性和分辨率限制。核心目标是通过贝叶斯框架下的最大后验概率(Maximum A Posteriori, MAP)反演,结合稀疏先验与噪声统计特性,实现低信噪比(Low Signal-to-Noise Ratio, SNR)环境下的高精度成像。
实际问题与产业意义:
实波束扫描雷达在军事(如对海探测)和民用领域(如航空导航)需高分辨成像能力,但传统方法面临两大挑战:
- 分辨率限制:方位向分辨率由波长和天线尺寸决定( θ ∝ λ / D \theta \propto \lambda/D θ∝λ/D),硬件提升成本高昂。
- 噪声敏感性:现有方法(如截断奇异值分解TSVD、自适应迭代方法IAA)在低SNR下成像质量差或计算复杂度高。
专利通过稀疏约束与瑞利分布的联合建模,显著提升抗噪能力和分辨率,对复杂电磁环境下的雷达系统具有重要应用价值。
2. 专利提出的新方法、模型与公式
2.1 回波建模与卷积反演框架
关键步骤:
-
回波信号建模:
雷达发射线性调频信号(Linear Frequency Modulation, LFM),接收回波经脉冲压缩和距离走动校正后,转化为卷积形式:s ( θ , τ ) = ∑ ( x , y ) ∈ Ω f ( x i , y i ) ⋅ w ( θ − θ i T β ) ⋅ rect ( τ − 2 r i c ) ⋅ exp ( − j 4 π λ r i ) + n ( θ , τ ) s(\theta,\tau)=\sum_{(x, y)\in\Omega} f(x_i, y_i)\cdot w\left(\frac{\theta-\theta_i}{T_\beta}\right)\cdot \text{rect}\left(\tau-\frac{2r_i}{c}\right)\cdot \exp\left(-j\frac{4\pi}{\lambda} r_i\right) + n(\theta,\tau) s(θ,τ)=(x,y)∈Ω∑f(xi,yi)⋅w(Tβθ−θi)⋅rect(τ−c2ri)⋅exp(−jλ4πri)+n(θ,τ)
其中, f ( x i , y i ) f(x_i,y_i) f(xi,yi)为目标散射系数, w ( ⋅ ) w(\cdot) w(⋅)为天线方向图函数, T β T_\beta Tβ为波束驻留时间, n ( θ ,