Single image dehazing论文阅读

1. 论文的研究目标与实际意义

1.1 研究目标

论文旨在解决单幅图像去雾(Single Image Dehazing)中的大气光-反射率模糊性(Airlight-Albedo Ambiguity)问题。传统方法依赖多图像输入、用户交互或强假设(如均匀雾浓度),而本文提出一种被动式去雾框架,仅需单幅图像即可恢复无雾场景。核心创新点在于:

  1. 提出包含表面反射率(Albedo)和阴影(Shading)的改进版大气散射模型;
  2. 利用局部统计不相关性(Local Statistical Uncorrelation)约束传输函数与表面反射率,消除解空间的模糊性。

1.2 实际问题与产业意义

雾霾导致图像对比度下降,影响遥感、自动驾驶等应用。例如,图1展示了去雾后图像在场景深度估计和对比度恢复上的显著提升:

Figure 1: Dehazing based on a single input image and the corresponding depth estimate.
应用价值

  • 消费摄影:提升恶劣天气下的拍摄质量;
  • 卫星遥感:增强雾霾地区地物识别能力;
  • 自动驾驶:提高雾天环境下的目标检测可靠性。

2. 论文的创新方法、模型与公式

2.1 改进的大气散射模型

传统模型(公式1)仅考虑传输函数 t ( x ) t(x) t(x)和大气光 A A A,而本文引入表面反射率 ρ ( x ) \rho(x) ρ(x)阴影 s ( x ) s(x) s(x),将图像分解为:
I ( x ) = t ( x ) ρ ( x ) s ( x ) + ( 1 − t ( x ) ) A ( 1 ) I(x) = t(x)\rho(x)s(x) + (1 - t(x))A \qquad (1) I(x)=t(x)ρ(x)s(x)+(1t(x))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值