DesnowNet: Context-Aware Deep Network for Snow Removal论文阅读

1. 论文的研究目标与实际意义

1.1 研究目标

论文旨在解决单幅图像雪粒去除(Single Image Snow Removal)的复杂问题。与传统雨雾去除不同,雪粒(Snow Particles)具有多尺度、形状多样、半透明与不透明混合等特性。传统方法依赖手工设计的特征(如HOG、频率分离),而本文提出DesnowNet,通过多阶段深度网络分别处理半透明雪粒(Translucent Snow)和不透明雪粒(Opaque Snow),并结合颜色畸变图(Chromatic Aberration Map)和残差生成(Residual Generation)实现高精度去雪。

1.2 实际问题与产业意义

雪粒会严重降低图像可见性,影响自动驾驶、监控系统等计算机视觉应用的可靠性。例如,图1展示了Google Vision API对雪天图像(行人、车辆)的识别置信度显著下降:

Fig.1. Realistic winter photograph(top) and corresponding snow removal result(bottom) of the proposed method with labels and confidences supported by Google Vision API.

高效去雪技术对以下领域至关重要:

  • 智能交通:提升雪天环境下车辆感知能力;
  • 安防监控:减少雪粒遮挡导致的误检漏检;
  • 消费摄影:改善恶劣天气下的拍摄效果。

2. 论文的创新方法、模型与公式

2.1 DesnowNet的整体架构

DesnowNet由透射恢复模块(TR Module)和残差生成模块(RG Module)组成,其核心架构如图2所示:

Fig. 2. Overview of the proposed DesnowNet.

2.1.1 图像建模与核心公式

输入雪图 x x x可分解为:
x = a ⊙ z + y ⊙ ( 1 − z ) ( 1 ) x = a \odot z + y \odot (1-z) \qquad (1) x=az+y(1z)(1)
其中:

  • y y y为无雪图像(目标输出),
  • z z z雪掩膜(Snow Mask)表示雪粒的透射率,
  • a a a颜色畸变图描述雪粒引起的颜色偏移,
  • ⊙ \odot 为逐元素乘法。

通过估计 z ^ \hat{z} z^ a a a,恢复无雪图像 y ^ \hat{y} y^的公式为:
y ^ = y ′ + r ( 2 ) \hat{y} = y' + r \qquad (2) y^=y+r(2)
其中 y ′ y' y由TR模块生成, r r r由RG模块生成。


2.1.2 透射恢复模块(TR Module)

TR模块通过多尺度特征提取金字塔最大输出(Pyramid Maxout)估计雪掩膜 z ^ \hat{z} z^和颜色畸变图 a a a

  1. 多尺度特征提取:采用改进的Inception-v4作为骨干网络,结合空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)增强多尺度建模能力:
    f t = ∥ n = 0 γ B 2 n ( Φ ( x ) ) ( 3 ) f_t = \left\|_{n=0}^{\gamma} B_{2^n}(\Phi(x)) \right. \qquad (3) ft=n=0γB2n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值