SAP MM采购申请审批-成本中心

在SAP系统中,抬头审批的采购申请要求所有行项目的成本中心必须相同,否则系统无法找到适用的审批策略。如果不同行项目类型导致成本中心不同,可能导致审批失败。解决方法是确保成本中心统一或调整审批策略配置。行项目审批则无此限制,可独立走流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

抬头审批的采购申请中行项目里的成本中心必须是同一个!

1、创建特性成本中心CT04

 

2、把特性分配给类CL02

 3、维护分类审批策略

这些成本中心都可以使用,如果是单项就需要再CT04维护成多值。

  如下采购申请,系统找不到审批策略,

https://i-blog.csdnimg.cn/blog_migrate/30515c968564461117db15eded0388b2.jpeg

2个行项目中,成本中心分别是4630和4762,

https://i-blog.csdnimg.cn/blog_migrate/0cf495efd8c69a0fef26b1c3e619febd.jpeg

https://i-blog.csdnimg.cn/blog_migrate/2788108578d96dc5ff8ef448040cdaab.jpeg

在PR 的审批策略配置中,这2个成本中心,同属于一个审批策略的分类视图里,

https://i-blog.csdnimg.cn/blog_migrate/d68420f94dc3e175e56499ddcb686248.jpeg

这个是SAP标准逻辑:在PR的总体发布策略中,如果一个特征的两个行项目有两个不同的值,那么sap将其视为空白值.当PR的审批在抬头级(overall  level)的时候,如果成本中心参与确定审批策略的话,一个PR单据中多个Item的成本中心必须是一致的。否则,系统无法确定采用哪个审批策略。

我删除一个item或者将item的成本中心改成相同之后,SAP能找到审批策略了:

https://i-blog.csdnimg.cn/blog_migrate/8c1625d915294e3b6761248e9dbcee4b.jpeg

那么如果不同类型的行项目会不会也无法审批?

从上图看,两行,一行是费用采购,另一个是正常的物料,也是不能审批的。删除一行就可以恢复正常了。

 也就说说抬头审批行项目的内容需要一致。

如果是行审批会不会有要求呢?

 

上两张图可以看到,行项目审批时没有控制的,可以独立走流程。

 

### CBAM注意力机制简介 CBAM(Convolutional Block Attention Module)是由Sanghyun Woo等人提出的,旨在通过引入通道注意力和空间注意力来提升卷积神经网络(CNN)的性能[^2]。 ### 原理详解 #### 通道注意力(Channel Attention) 通道注意力模块主要负责捕捉不同通道之间的依赖关系。该过程分为两步: 1. **特征聚合**:分别计算输入特征图的最大池化结果和平均池化结果。 2. **多层感知器处理**:将上述两种池化的结果送入一个多层感知器(MLP),其中包含两个全连接层,最终得到各个通道的重要性权重。这些权重视作一种软选择机制,用来重新调整原始特征图中的每一个通道响应[^4]。 ```python class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=8): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) # shared MLP self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) ``` #### 空间注意力(Spatial Attention) 空间注意力则专注于建模像素级别的关联性。同样地,此操作也包含了两个阶段: 1. **跨维度融合**:沿通道轴对最大池化与均值池化后的特征映射执行按位最大/最小运算,以此获得描述整个感受野内重要性的二维矩阵。 2. **卷积滤波**:利用7×7大小的卷积核对该二阶统计量实施变换,进而生成对应的空间注意系数[^3]。 ```python class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) ``` 最后,将两者串联起来形成完整的CBAM结构,并将其应用于任何中间层之后作为附加组件以增强原有架构的表现力。 ```python class CBAM(nn.Module): def __init__(self, gate_channels, reduction_ratio=16, no_spatial=False): super(CBAM, self).__init__() self.ChannelGate = ChannelAttention(gate_channels, reduction_ratio) self.no_spatial=no_spatial if not no_spatial: self.SpatialGate = SpatialAttention() def forward(self, x): x_out = self.ChannelGate(x) x_out = x * x_out if not self.no_spatial: x_out = self.SpatialGate(x_out) x_out = x * x_out return x_out ``` ### 应用场景 在计算机视觉领域中,特别是在目标检测任务里像YOLO这样的算法框架下集成CBAM可以显著提高对于特定物体识别精度以及鲁棒性。这是因为CBAM能够帮助模型更好地聚焦于感兴趣区域的同时抑制背景噪声干扰[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SAP龙哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值