PCB中常见的几种保护电路

关注+星标公众,不错过精彩内容

15258e907533a711795e295b8815c098.gif

素材来源 | 网络

在复杂的环境中,电子产品可能面临各种各样的“攻击”,一个合格的电子产品,至少存在一种保护的电路。

今天就让我们一起来看看它们是如何稳定保障我们日常生活的吧!

1、短路保护

短路保护电路的主要作用是当电路系统中发生短路情况时及时断开闭合电路以此保证后续各个器件的安全。

当电源系统发生短路时,电路中的电流会瞬间增大到正常状况的好几倍甚至十多倍。

我们可以利用这个特性,在电路中串入保险丝

当电流增大到保险丝的熔断电流时,保险丝会因为自身过热而发生熔断从而断开电路,这是最常见的保护电路之一

c76e3679ae7006adaeb018b54d38de3c.jpeg

但是这种保险丝有一个缺点:当保险丝熔断之后,必须由工程人员排除故障之后手动替换新的保险丝,这在一些狭小空间等场合十分不便,因此后来便诞生了“自恢复保险丝”。

这种保险丝在发生熔断之后随着温度的降低又会重新接通,这样便可以在发生故障时断开供电开关,等排查故障之后再打开供电开关即可。自恢复保险丝是如何做到“自恢复”的呢?

3ef9764e1466598cd8464f9bd3a08bc5.jpeg

自恢复保险丝,是由经过特殊处理的聚合树脂及分布在里面的导电粒子组成。

12a9014f04f379b06804f8ef6f419962.jpeg

在正常状况下,聚合树脂紧密地将导电粒子束缚在结晶状的结构外,构成链状导电电通路,此时的自恢复保险丝为低阻状态,线路上流经自恢复保险丝的电流所产生的热能小,不会改变晶体结构。

当线路发生短路或过载时,流经自恢复保险丝的大电流,产生的热量使聚合树脂融化,体积迅速增长,形成高阻状态,工作电流迅速减小,从而对电路进行限制和保护。因此由自恢复保险丝构成的保护电路还可以承担过热过流保护。

2、过压保护

过压保护是指供电电压超过额定的电压时自动断开供电回路的一种保护电路。在电子电路设计中,常见的保护方式是使用齐纳二极管的过压保护,也叫稳压二极管。如图2-1:

f268ab4e8c1958b733bfaa639deb6319.png

图2-1

1N4099是一个6.8V的二极管,如果输入超过6.8V,输出将被钳位在6.8V左右。

3、防反接保护

很多电子元器件是不允许电源正负极反接的,在设计完成的电路板中,外部接口如果没有防反接设计,用户在使用的时候很容易将正负极接错导致器件烧毁造成财产损失。

防反接设计电路的原理就是在电源输入的前级将电源整流至确定的极性再接入固定的后级。如图3-1所示:

428d65dd038ca4862bcf17f251a3664c.png

图3-1

还有一种防反接方式是当电源反接时自动关断,如图3-2所示:

5d6352bba59f546376fc16be5e4890f9.png

图3-2

这种电路使用MOS管关断,由于MOS管的寄生二极管压降较小,在正常使用时能够承受更大的电流。

4、雷击浪涌保护

雷电是严重的自然灾害之一,早期的电子设备如电视机,电冰箱等深受其害。在笔者儿时的记忆中也经常听说有电视机在雷雨之夜后被打坏,随着技术的发展,这种情况在日常生活中几乎不再发生。这要归功于雷击浪涌防护电路。

在发生雷击时,接地点附近的零电位会被抬高,导致供电电压不稳定。如果闪电击中供电线附近,产生的感应电压也不容小觑。浪涌的波形很像平静的海滩上突如其来的海浪,我们形象地称之为浪涌。

为了消除这种浪涌电压,比较常用的器件有:放电管压敏电阻TVS共模电感等器件。

其中放电管、压敏电阻与TVS的防护原理是当电压超过一个阈值时,器件的电阻会迅速减小,我们将该器件并联在电路中,从而提供一个泄放通道到地。

共模电感便是利用电感的特性,只允许两个同相相反振幅的电压通过,而浪涌一般是两个相同的信号,这样浪涌就会被抑制,通常共模电感用在放电管、压敏电阻等器件的后级。

共模浪涌抑制电路如图4-1所示:

a217045a0bfe1eb2b249d8aeabac542a.png

图4-1

5、静电防护

在人体接触电子设备时时常会发生静电放电,特别是在冬季。实际上上千伏的电压与上述的雷击浪涌情况类似,也可以用上述方案处理。

声明:本文素材来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。

------------ END ------------

2f9b5c0eb89560d7d697ea0f3ad71ddd.gif

●专栏《嵌入式工具

●专栏《嵌入式开发》

●专栏《Keil教程》

●嵌入式专栏精选教程

关注公众号回复“加群”按规则加入技术交流群,回复“1024”查看更多内容。

点击“阅读原文”查看更多分享。

### RAG新框架的理解与实现 RAG(Retrieval-Augmented Generation)是一种结合检索生成能力的技术架构,旨在提升自然语言处理任务的效果。以下是关于如何理解、实现以及验证RAG新框架的关键点。 #### 1. **核心概念** RAG的核心在于将检索模块引入到生成过程中,从而增强模型对特定领域知识的学习能力和泛化效果。这种设计使得系统能够更好地利用外部数据源来补充预训练模型的知识不足[^2]。 #### 2. **主要组成部分** - **检索模块**: 负责从大规模文档集合中提取相关信息片段。该部分通常依赖于向量数据库或其他高效索引结构完成近似最近邻搜索操作[^4]。 - **生成模块**: 借助大型语言模型(LLMs),基于检索得到的结果生成高质量回复或摘要等内容形式输出[^3]。 #### 3. **具体实施步骤概述** 虽然不采用逐步描述方式,但仍需提及几个重要方面: - 数据准备阶段涉及构建适合当前应用场景需求特征表示形式的数据集; - 构建适配器网络连接不同子系统之间交互逻辑关系; - 设计评估指标体系用于衡量整个流程有效性及稳定性表现情况; 下面给出一段简单的Python伪代码展示基本思路: ```python from transformers import RagTokenizer, RagTokenForGeneration def initialize_rag_model(): tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq") return tokenizer, model tokenizer, model = initialize_rag_model() context_input_ids = tokenizer.batch_encode_plus( ["some context"], max_length=100, return_tensors="pt" )["input_ids"] question_encoder_last_hidden_state = model.question_encoder(context_input_ids)[0] retrieved_doc_embeds = ... # Assume this is retrieved from a database. generated_text = model.generate( context_input_ids=context_input_ids, retrieved_doc_embeds=retrieved_doc_embeds ) print(tokenizer.decode(generated_text.squeeze(), skip_special_tokens=True)) ``` 此段代码展示了初始化RAG模型的过程,并演示了如何使用它生成文本[^1]。 #### 4. **验证与校对策略** 为了确保所开发的RAG系统达到预期目标,在部署前应进行全面测试。包括但不限于以下几个维度: - 准确度检验:对比实际结果同标准答案之间的差异程度; - 效率考量:分析响应时间长短及其资源消耗状况; - 可靠性保障:模拟多种异常场景下的行为模式观察其鲁棒特性;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值