动手深度学习-2.5 自动微分

深度学习框架通过自动微分来加快求导,系统会根据模型构建一个计算图,反向传播会跟踪整个计算图,填充关于每个参数的偏导数。

2.5.1 一个简单的例子

  • 对函数 y = 2 x T x y=2\mathbf{x} ^{T}\mathbf{x} y=2xTx关于列向量 x x x求导
import torch

x = torch.arange(4.0)
x
  • 声明需要一个地方来存储梯度
x.requires_grad_(True)
x.grad
  • 正向传播计算y
y = 2 * torch.dot(x, x)
y
  • 反向传播计算y关于x每个分量的梯度
y.backward()
x.grad
  • 验证函数 y = 2 x T x y=2\mathbf{x} ^{T}\mathbf{x} y=2xTx关于 x x x的梯度是否为4 x x x
x.grad == 4 * x

-梯度清零,计算另一个函数关于x的梯度

x.grad.zero_()
y = x.sum()
y.backward()
x.grad

2.5.2 非标量变量的反向传播

  • 对非标量调用backward需要传入一个gradient参数,该参数指定微分函数关于self的梯度。
x.grad.zero_()
y = x * x
y.backward(torch.ones(len(x)))
#等价于y.sum().backward()
x.grad

2.5.3 分离计算

  • 使用.detach()函数将某些计算移动到计算图之外
x.grad.zero_()
y = x * x
u = y.detach()
z = u * x

z.sum().backward()
x.grad == u
  • 计算y关于x的导数
x.grad.zero_()
y.sum().backward()
x.grad == 2 * x

2.5.4 Python控制流的梯度计算

即使构建函数的计算图需要通过Python控制流,我们仍然可以计算得到变量的梯度。

  • 使用while循环语句和if条件语句定义函数f(a)
def f(a):
	b = a * 2
	while b.norm() < 1000:
		b = b * 2
	if b.sum() > 0:
		c = b
	else:
		c = 100 * b
	return c
  • 使用反向传播计算梯度
a = torch.randn(size = (), requires_grad = True)
d = f(a)
d.backward()
  • 验证梯度是否正确
a.grad == d / a
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值