多普勒频率
固定放置的雷达发出特定频率的发射信号,遇到静止物体产生的反射信号频率并不改变,而遇到运动物体产生的反射波将会发生多普勒频移。如下图所示
图中,
V
V
V表示汽车行驶速度,
c
c
c表示电磁波传播速度,
λ
t
{{\lambda }_{t}}
λt表示雷达发射波的波长,
λ
r
{{\lambda }_{r}}
λr表示回波信号的波长。
将雷达的接收信号与回波信号进行混频,产生低频信号,即为多普勒信号。
假设雷达发射信号表示为
s
t
(
t
)
=
A
cos
(
ω
0
t
+
φ
)
{{s}_{t}}\left( t \right)=A\cos \left( {{\omega }_{0}}t+\varphi \right)
st(t)=Acos(ω0t+φ)
式中,
ω
0
{{\omega }_{0}}
ω0为发射角频率,
φ
\varphi
φ为初相,
A
A
A为振幅。
回波信号
s
r
(
t
)
{{s}_{r}}\left( t \right)
sr(t)可以表示为
s
r
(
t
)
=
k
s
t
(
t
−
t
r
)
=
k
A
cos
[
w
0
(
t
−
t
r
)
+
φ
]
{{s}_{r}}\left( t \right)=k{{s}_{t}}\left( t-{{t}_{r}} \right)=kA\cos \left[ {{w}_{0}}\left( t-{{t}_{r}} \right)+\varphi \right]
sr(t)=kst(t−tr)=kAcos[w0(t−tr)+φ]
式中,
t
r
=
2
R
/
c
{{t}_{r}}=2R/c
tr=2R/c,表示回波信号滞后于发射信号的时间,
k
k
k为回波的衰减系数。
如果目标固定不动,则距离
R
R
R为常数。回波与发射信号之间有固定的相位差
ω
0
t
r
=
2
π
f
0
⋅
2
R
/
c
=
(
2
π
/
λ
)
2
R
{{\omega }_{0}}{{t}_{r}}=2\pi {{f}_{0}}\cdot 2R/c=\left( 2\pi /\lambda \right)2R
ω0tr=2πf0⋅2R/c=(2π/λ)2R
当目标与雷达之间存在相对运动,则距离
R
R
R随时间变化。设目标以匀速相对雷达运动,则在时间
t
t
t时刻,目标与雷达间的距离
R
(
t
)
R\left( t \right)
R(t)为
R
(
t
)
=
R
0
−
v
r
t
R\left( t \right)={{R}_{0}}-{{v}_{r}}t
R(t)=R0−vrt
上式表明,在
t
t
t时刻接收到的波形
s
r
(
t
)
{{s}_{r}}\left( t \right)
sr(t)上的点,是雷达在
t
−
t
r
t-{{t}_{r}}
t−tr时刻发射的。因为通常雷达和目标间的相对运动速度
v
r
{{v}_{r}}
vr远小于电磁波速度
c
c
c,所以时延
t
r
{{t}_{r}}
tr可以表示为
t
r
=
2
R
(
t
)
c
=
2
c
(
R
0
−
v
r
t
)
{{t}_{r}}=\frac{2R\left( t \right)}{c}=\frac{2}{c}\left( {{R}_{0}}-{{v}_{r}}t \right)
tr=c2R(t)=c2(R0−vrt)
回波信号和发射信号相比,高频相位差为
φ
=
−
ω
0
t
r
=
−
ω
0
2
c
(
R
0
−
v
r
t
)
=
−
2
π
2
λ
(
R
0
−
v
r
t
)
\varphi =-{{\omega }_{0}}{{t}_{r}}=-{{\omega }_{0}}\frac{2}{c}\left( {{R}_{0}}-{{v}_{r}}t \right)=-2\pi \frac{2}{\lambda }\left( {{R}_{0}}-{{v}_{r}}t \right)
φ=−ω0tr=−ω0c2(R0−vrt)=−2πλ2(R0−vrt)
是时间
t
t
t的函数,在径向速度
v
r
{{v}_{r}}
vr为常数时,产生频率差为
f
d
=
1
2
π
d
φ
d
t
=
2
λ
v
r
{{f}_{d}}=\frac{1}{2\pi }\frac{d\varphi }{dt}=\frac{2}{\lambda }{{v}_{r}}
fd=2π1dtdφ=λ2vr
上述公式即是多普勒频率的公式
测速原理
根据前面的分析,CW体制雷达的回波信号是含有速度信息的正弦信号。如果速度恒定,则天线的输出信号是单一频率的正弦信号。
假设单一频率的实正弦信号可以表示为
x
(
t
)
=
a
cos
(
2
π
f
0
t
+
θ
0
)
x\left( t \right)=a\cos \left( 2\pi {{f}_{0}}t+{{\theta }_{0}} \right)
x(t)=acos(2πf0t+θ0)
其中,
a
a
a为正弦信号的幅度,
f
0
{{f}_{0}}
f0为正弦信号的频率,
θ
0
{{\theta }_{0}}
θ0为正弦信号的初相。对上述信号进行采样,采样周期为
T
s
{{T}_{s}}
Ts,采样频率为
f
s
{{f}_{s}}
fs,则可以得到长度为N的序列
x
(
n
)
x\left( n \right)
x(n)
x
(
n
)
=
a
cos
(
ω
0
n
+
θ
0
)
n
=
0
,
1
,
2
,
.
.
.
,
N
−
1
x\left( n \right)=a\cos \left( {{\omega }_{0}}n+{{\theta }_{0}} \right)n=0,1,2,...,N-1
x(n)=acos(ω0n+θ0)n=0,1,2,...,N−1
由于
ω
0
=
2
π
f
0
T
s
{{\omega }_{0}}=2\pi {{f}_{0}}{{T}_{s}}
ω0=2πf0Ts
x
(
n
)
x\left( n \right)
x(n)的DTFT变换为
X
(
e
j
ω
)
=
a
2
e
j
θ
0
δ
(
ω
−
ω
0
)
+
a
2
e
−
j
θ
0
δ
(
ω
+
ω
0
)
X\left( {{e}^{j\omega }} \right)=\frac{a}{2}{{e}^{j{{\theta }_{0}}}}\delta \left( \omega -{{\omega }_{0}} \right)+\frac{a}{2}{{e}^{-j{{\theta }_{0}}}}\delta \left( \omega +{{\omega }_{0}} \right)
X(ejω)=2aejθ0δ(ω−ω0)+2ae−jθ0δ(ω+ω0)
设所采用的窗函数为矩形窗
R
N
(
n
)
{{R}_{N}}\left( n \right)
RN(n),则它的DTFT变换为
H
(
e
j
ω
)
=
sin
(
ω
N
2
)
sin
(
ω
2
)
e
−
j
ω
N
−
1
2
H\left( {{e}^{j\omega }} \right)=\frac{\sin \left( \frac{\omega N}{2} \right)}{\sin \left( \frac{\omega }{2} \right)}{{e}^{-j\omega \frac{N-1}{2}}}
H(ejω)=sin(2ω)sin(2ωN)e−jω2N−1
考虑到
v
(
n
)
=
x
(
n
)
∗
R
N
(
n
)
v\left( n \right)=x\left( n \right)*{{R}_{N}}\left( n \right)
v(n)=x(n)∗RN(n),根据频域卷积定理,时域的乘积对应于频域的卷积,所以
v
(
n
)
v\left( n \right)
v(n)的DTFT变换为
V
(
e
j
ω
)
=
a
2
sin
[
(
ω
−
ω
0
)
N
2
]
sin
(
ω
−
ω
0
)
2
e
−
j
(
ω
−
ω
0
)
N
−
1
2
+
j
θ
0
+
a
2
sin
[
(
ω
+
ω
0
)
N
2
]
sin
(
ω
+
ω
0
)
2
e
−
j
(
ω
+
ω
0
)
N
−
1
2
−
j
θ
0
\begin{aligned} & V({{e}^{j\omega }})=\frac{a}{2}\frac{\sin \left[ \frac{\left( \omega -{{\omega }_{0}} \right)N}{2} \right]}{\sin \frac{\left( \omega -{{\omega }_{0}} \right)}{2}}{{e}^{-j\left( \omega -{{\omega }_{0}} \right)\frac{N-1}{2}\text{+}j{{\theta }_{0}}}} \\ & +\frac{a}{2}\frac{\sin \left[ \frac{\left( \omega +{{\omega }_{0}} \right)N}{2} \right]}{\sin \frac{\left( \omega +{{\omega }_{0}} \right)}{2}}{{e}^{-j\left( \omega +{{\omega }_{0}} \right)\frac{N-1}{2}-j{{\theta }_{0}}}} \\ \end{aligned}
V(ejω)=2asin2(ω−ω0)sin[2(ω−ω0)N]e−j(ω−ω0)2N−1+jθ0+2asin2(ω+ω0)sin[2(ω+ω0)N]e−j(ω+ω0)2N−1−jθ0
考虑到
v
(
k
)
v\left( k \right)
v(k)是
v
(
e
j
ω
)
v\left( {{e}^{j\omega }} \right)
v(ejω)的频域离散化表示,因此将
v
(
e
j
ω
)
v\left( {{e}^{j\omega }} \right)
v(ejω)中的
ω
\omega
ω用离散量
2
π
N
k
\frac{2\pi }{N}k
N2πk代入,即得到
v
(
k
)
v\left( k \right)
v(k)表达式,考虑到
v
(
k
)
v\left( k \right)
v(k)的对称性,只保留前半部分的表达式为
V
(
k
)
=
a
2
sin
[
(
2
π
N
k
−
ω
0
)
N
2
]
sin
(
2
π
N
k
−
ω
0
)
2
e
−
j
(
2
π
N
k
−
ω
0
)
N
−
1
2
+
j
θ
0
V(k)=\frac{a}{2}\frac{\sin \left[ \frac{\left( \frac{2\pi }{N}k-{{\omega }_{0}} \right)N}{2} \right]}{\sin \frac{\left( \frac{2\pi }{N}k-{{\omega }_{0}} \right)}{2}}{{e}^{-j\left( \frac{2\pi }{N}k-{{\omega }_{0}} \right)\frac{N-1}{2}\text{+}j{{\theta }_{0}}}}
V(k)=2asin2(N2πk−ω0)sin[2(N2πk−ω0)N]e−j(N2πk−ω0)2N−1+jθ0
V
(
k
)
V\left( k \right)
V(k)的模为
∣
V
(
k
)
∣
=
a
2
∣
sin
[
π
(
k
−
f
0
N
/
f
s
)
]
sin
π
(
k
−
f
0
N
/
f
s
)
N
∣
\left| V(k) \right|=\frac{a}{2}\left| \frac{\sin \left[ \pi \left( k-{{f}_{0}}N/{{f}_{s}} \right) \right]}{\sin \frac{\pi \left( k-{{f}_{0}}N/{{f}_{s}} \right)}{N}} \right|
∣V(k)∣=2a∣∣∣∣∣sinNπ(k−f0N/fs)sin[π(k−f0N/fs)]∣∣∣∣∣
设
V
(
k
)
V\left( k \right)
V(k)中幅值最大的样本点的索引为
k
0
{{k}_{0}}
k0,对应的幅值记为
A
1
{{A}_{1}}
A1
A
1
=
∣
V
(
k
0
)
∣
=
a
2
∣
sin
[
π
(
k
0
−
f
0
N
/
f
s
)
]
sin
π
(
k
0
−
f
0
N
/
f
s
)
N
∣
{{A}_{1}}=\left| V({{k}_{0}}) \right|=\frac{a}{2}\left| \frac{\sin \left[ \pi \left( {{k}_{0}}-{{f}_{0}}N/{{f}_{s}} \right) \right]}{\sin \frac{\pi \left( {{k}_{0}}-{{f}_{0}}N/{{f}_{s}} \right)}{N}} \right|
A1=∣V(k0)∣=2a∣∣∣∣∣sinNπ(k0−f0N/fs)sin[π(k0−f0N/fs)]∣∣∣∣∣
令
δ
=
(
k
0
−
f
0
N
/
f
s
)
=
(
k
0
−
f
0
f
s
N
)
=
(
k
0
−
f
0
Δ
f
)
\delta =\left( {{k}_{0}}-{{f}_{0}}N/{{f}_{s}} \right)=\left( {{k}_{0}}-\frac{{{f}_{0}}}{\frac{{{f}_{s}}}{N}} \right)=\left( {{k}_{0}}-\frac{{{f}_{0}}}{\Delta f} \right)
δ=(k0−f0N/fs)=(k0−Nfsf0)=(k0−Δff0)
则
−
0.5
<
δ
<
0.5
-0.5<\delta <0.5
−0.5<δ<0.5
A
1
=
∣
V
(
k
0
)
∣
=
a
2
∣
sin
(
π
δ
)
sin
π
δ
N
∣
≈
a
N
2
π
∣
sin
(
π
δ
)
δ
∣
{{A}_{1}}=\left| V({{k}_{0}}) \right|=\frac{a}{2}\left| \frac{\sin \left( \pi \delta \right)}{\sin \frac{\pi \delta }{N}} \right|\approx \frac{aN}{2\pi }\left| \frac{\sin \left( \pi \delta \right)}{\delta } \right|
A1=∣V(k0)∣=2a∣∣∣∣∣sinNπδsin(πδ)∣∣∣∣∣≈2πaN∣∣∣∣δsin(πδ)∣∣∣∣
设
V
(
k
)
V\left( k \right)
V(k)中幅值的次大值的样本点的索引为
k
2
{{k}_{2}}
k2,
k
2
=
k
0
±
1
{{k}_{2}}={{k}_{0}}\pm 1
k2=k0±1,对应的幅值记为
A
2
{{A}_{2}}
A2
A
2
=
∣
V
(
k
2
)
∣
=
a
2
∣
sin
[
π
(
k
2
−
f
0
N
/
f
s
)
]
sin
π
(
k
2
−
f
0
N
/
f
s
)
N
∣
{{A}_{2}}=\left| V({{k}_{2}}) \right|=\frac{a}{2}\left| \frac{\sin \left[ \pi \left( {{k}_{2}}-{{f}_{0}}N/{{f}_{s}} \right) \right]}{\sin \frac{\pi \left( {{k}_{2}}-{{f}_{0}}N/{{f}_{s}} \right)}{N}} \right|
A2=∣V(k2)∣=2a∣∣∣∣∣sinNπ(k2−f0N/fs)sin[π(k2−f0N/fs)]∣∣∣∣∣
当
δ
<
0
\delta <0
δ<0的时候,
k
2
=
k
0
+
1
{{k}_{2}}={{k}_{0}}+1
k2=k0+1,代入得到
A
2
=
∣
V
(
k
2
)
∣
=
a
2
∣
sin
[
π
(
k
0
+
1
−
f
0
N
/
f
s
)
]
sin
π
(
k
0
+
1
−
f
0
N
/
f
s
)
N
∣
=
a
2
∣
sin
[
π
δ
+
π
]
sin
π
δ
+
π
N
∣
=
a
N
2
π
∣
sin
π
δ
1
+
δ
∣
\begin{aligned} & {{A}_{2}}=\left| V({{k}_{2}}) \right|=\frac{a}{2}\left| \frac{\sin \left[ \pi \left( {{k}_{0}}\text{+}1-{{f}_{0}}N/{{f}_{s}} \right) \right]}{\sin \frac{\pi \left( {{k}_{0}}\text{+}1-{{f}_{0}}N/{{f}_{s}} \right)}{N}} \right| \\ & \text{=}\frac{a}{2}\left| \frac{\sin \left[ \pi \delta +\pi \right]}{\sin \frac{\pi \delta +\pi }{N}} \right|=\frac{aN}{2\pi }\left| \frac{\sin \pi \delta }{1+\delta } \right| \\ \end{aligned}
A2=∣V(k2)∣=2a∣∣∣∣∣sinNπ(k0+1−f0N/fs)sin[π(k0+1−f0N/fs)]∣∣∣∣∣=2a∣∣∣∣∣sinNπδ+πsin[πδ+π]∣∣∣∣∣=2πaN∣∣∣∣1+δsinπδ∣∣∣∣
当
δ
>
0
\delta >0
δ>0的时候,
k
2
=
k
0
−
1
{{k}_{2}}={{k}_{0}}-1
k2=k0−1,代入得到
A
2
=
∣
V
(
k
2
)
∣
=
a
2
∣
sin
[
π
(
k
0
−
1
−
f
0
N
/
f
s
)
]
sin
π
(
k
0
−
1
−
f
0
N
/
f
s
)
N
∣
=
a
2
∣
sin
[
π
δ
−
π
]
sin
π
δ
−
π
N
∣
=
a
N
2
π
∣
sin
π
δ
1
−
δ
∣
\begin{aligned} & {{A}_{2}}=\left| V({{k}_{2}}) \right|=\frac{a}{2}\left| \frac{\sin \left[ \pi \left( {{k}_{0}}-1-{{f}_{0}}N/{{f}_{s}} \right) \right]}{\sin \frac{\pi \left( {{k}_{0}}-1-{{f}_{0}}N/{{f}_{s}} \right)}{N}} \right| \\ & \text{=}\frac{a}{2}\left| \frac{\sin \left[ \pi \delta -\pi \right]}{\sin \frac{\pi \delta -\pi }{N}} \right|=\frac{aN}{2\pi }\left| \frac{\sin \pi \delta }{1-\delta } \right| \\ \end{aligned}
A2=∣V(k2)∣=2a∣∣∣∣∣sinNπ(k0−1−f0N/fs)sin[π(k0−1−f0N/fs)]∣∣∣∣∣=2a∣∣∣∣∣sinNπδ−πsin[πδ−π]∣∣∣∣∣=2πaN∣∣∣∣1−δsinπδ∣∣∣∣
综上,次大值的表达式为
A
2
=
∣
X
(
k
2
)
∣
=
N
a
∣
sin
(
π
δ
)
∣
2
π
(
1
−
∣
δ
∣
)
{{A}_{2}}=\left| X\left( {{k}_{2}} \right) \right|=\frac{Na\left| \sin \left( \pi \delta \right) \right|}{2\pi \left( 1-\left| \delta \right| \right)}
A2=∣X(k2)∣=2π(1−∣δ∣)Na∣sin(πδ)∣
次大值和最大值的比值为
α
=
A
2
A
1
=
∣
δ
∣
1
−
∣
δ
∣
\alpha =\frac{{{A}_{2}}}{{{A}_{1}}}=\frac{\left| \delta \right|}{1-\left| \delta \right|}
α=A1A2=1−∣δ∣∣δ∣
则可以得到
∣
δ
∣
=
α
1
+
α
=
A
2
A
1
+
A
2
\left| \delta \right|=\frac{\alpha }{1+\alpha }=\frac{{{A}_{2}}}{{{A}_{1}}+{{A}_{2}}}
∣δ∣=1+αα=A1+A2A2
根据
δ
\delta
δ值可对离散频谱得到的
f
0
{{f}_{0}}
f0的估计值插值从而得到更精细的频率估计值
f
0
∧
=
(
k
0
±
∣
δ
∣
)
N
T
s
\overset{\wedge }{\mathop{{{f}_{0}}}}\,=\frac{({{k}_{0}}\pm \left| \delta \right|)}{N{{T}_{s}}}
f0∧=NTs(k0±∣δ∣)
式中符号根据
k
2
{{k}_{2}}
k2的位置确定,若
k
2
=
k
0
+
1
{{k}_{2}}={{k}_{0}}+1
k2=k0+1取加号,反之取减号。
以上就是CW雷达测速的原理。