【数据集】最近开源的一些多模态图表理解数据集

1. CharXiv

现有数据集通常关注过于简化和同质化的图表,并且问题往往基于模板生成,这导致了对MLLMs图表理解能力的过度乐观评估。为了解决这个问题,作者提出了一个新的评估套件CharXiv,它包含了从arXiv论文中精选的2323个自然、具有挑战性和多样性的图表,并设计了两种类型的问题:描述性问题和推理问题,以全面评估MLLMs在图表理解方面的能力。

  • paper:Charting Gaps in Realistic Chart Understanding in Multimodal LLMs
  • link:https://arxiv.org/abs/2406.18521
  • dataset:https://huggingface.co/datasets/princeton-nlp/CharXiv

2. OneChart

数据集类型:图表结构提取、图表推理

  • paper:OneChart: Purify the Chart Structural Extraction via One Auxiliary Token
  • link:https://arxiv.org/abs/2404.09987
  • dataset:https://github.com/LingyvKong/OneChart

3. ChartLlama

  • paper:ChartLlama: A Multimodal LLM for Chart Understanding and Generation
  • link:https://arxiv.org/pdf/2311.16483
  • dataset:https://huggingface.co/datasets/listen2you002/ChartLlama-Dataset

4. ChartX

  • ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning
  • link:https://arxiv.org/pdf/2402.12185
  • dataset:https://github.com/UniModal4Reasoning/ChartVLM
### 开源多模态问答系统的大型模型实现与应用 #### 背景介绍 多模态大型语言模型(MLLM)旨在融合多种数据形式,如文本、图像、音频等,从而提供更加综合的数据理解能力[^2]。这类模型克服了传统单一模式模型仅能处理特定类型输入的局限性。 #### mPLUG-PaperOwl案例分析 具体来说,在科学图表解析领域内有一个名为mPLUG-PaperOwl的项目值得关注。此模型利用其强大的跨媒体感知能力和逻辑推理机制来解读科研文献中的复杂图形信息并作出解释[^1]。这表明通过合理设计架构以及训练策略,可以构建出能够有效应对多样化查询需求的知识密集型问答平台。 #### 技术框架概述 对于希望开发或评估类似的开源解决方案的研究人员而言,可以从以下几个方面入手: - **数据集准备**:收集高质量且标注详尽的多媒体资料作为训练样本; - **预训练阶段**:采用大规模无监督学习方法对基础网络参数进行初始化; - **微调过程**:针对特定应用场景引入少量人工标记实例进一步优化性能表现; - **部署考量**:考虑实际运行环境下的资源消耗情况及响应速度要求等因素。 ```python import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer def load_model(model_name='bert-base-cased'): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) return tokenizer, model tokenizer, qa_model = load_model() ``` 上述代码片段展示了如何加载一个用于问答任务的基础BERT模型。当涉及到多模态场景时,则需替换为支持图片或其他非结构化数据类型的相应版本,并调整输入格式以适应不同感官通道的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值