Cross-Encoder实现文本匹配(重排序模型)

引言

前面几篇文章都是基于表示型的方法训练BERT进行文本匹配,而本文是以交互型的方法。具体来说,将待匹配的两个句子拼接成一个输入喂给BERT模型,最后让其输出一个相似性得分。

文本匹配系列文章先更新到此,目前为止都是基于监督学习Sentence Pair的方式,后续有时间继续更新对比学习三元组(anchor, positive, negative)的方式和无监督学习的方式。

架构

image-20231018135433256

Cross-Encoder会利用自注意力机制不断计算这两个句子之间的交互(注意力),最后接一个分类器输出一个分数(logits)代表相似度(可以经过sigmoid变成一个概率)。

实现

实现采用类似Huggingface的形式,每个文件夹下面有一种模型。分为modelingargumentstrainer等不同的文件。不同的架构放置在不同的文件夹内。

modeling.py:

import torch
from torch import nn
import numpy as np

from tqdm import tqdm

from transformers import (
    AutoTokenizer,
    AutoConfig,
    AutoModelForSequenceClassification,
)
from torch.utils.data import DataLoader
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers.tokenization_utils_base import BatchEncoding


import logging

logger = logging.getLogger(__name__)


class SentenceBert(nn.Module):
    def __init__(
        self,
        model_name: str,
        max_length: int = None,
        trust_remote_code: bool = True,
    ) -> None:
        super().__init__()
        self.config = AutoConfig.from_pretrained(
            model_name, trust_remote_code=trust_remote_code
        )
        self.config.num_labels = 1

        # reranker
        self.model = AutoModelForSequenceClassification.from_pretrained(
            model_name, config=self.config, trust_remote_code=trust_remote_code
        )
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_name, trust_remote_code=trust_remote_code
        )

        self.max_length = max_length

        self.loss_fct = nn.BCEWithLogitsLoss()

    def batching_collate(self, batch: list[tuple[str, str]]) -> BatchEncoding:
        texts = [[] for _ in range(len(batch[0]))]

        for example in batch:
            for idx, text in enumerate(example):
                texts[idx].append(text.strip())

        tokenized = self.tokenizer(
            *texts,
            padding=True,
            truncation="longest_first",
            return_tensors="pt",
            max_length=self.max_length
        ).to(self.model.device)

        return tokenized

    def predict(
        self,
        sentences: list[tuple[str, str]],
        batch_size: int = 64,
        convert_to_tensor: bool = True,
        show_progress_bar: bool = False,
    ):
        dataloader = DataLoader(
            sentences,
            batch_size=batch_size,
            collate_fn=self.batching_collate,
            shuffle=False,
        )

        preds = []

        for batch in tqdm(
            dataloader, disable=not show_progress_bar, desc="Running Inference"
        ):
            with torch.no_grad():
                logits = self.model(**batch).logits
                logits = torch.sigmoid(logits)

                preds.extend(logits)

        if convert_to_tensor:
            preds = torch.stack(preds)
        else:
            preds = np.asarray([pred.cpu().detach().float().numpy() for pred in preds])

        return preds

    def forward(self, inputs, labels=None):

        outputs = self.model(**inputs, return_dict=True)

        if labels is not None:
            labels = labels.float()

            logits = outputs.logits
            logits = logits.view(-1)

            loss = self.loss_fct(logits, labels)

            return SequenceClassifierOutput(loss, **outputs)

        return outputs

    def save_pretrained(self, output_dir: str) -> None:
        state_dict = self.model.state_dict()
        state_dict = type(state_dict)(
            {k: v.clone().cpu().contiguous() for k, v in state_dict.items()}
        )
        self.model.save_pretrained(output_dir, state_dict=state_dict)

整个模型的实现放到modeling.py文件中。

这里首先设置类别数为1num_labels = 1;然后通过AutoModelForSequenceClassification增加一个序列分类器头,该分类器头核心代码为:

class BertForSequenceClassification(BertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config
		# 实例化BERT模型
        self.bert = BertModel(config)
  
		# 增加一个线性层,从hidden_size映射为num_labels维度,这里是1
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
       
		# 先得到bert模型的输出
        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
		# 实际上是cls 标记对应的表示
        pooled_output = outputs[1]
		# 得到一个一维的logits
        logits = self.classifier(pooled_output)

BERT模型中所谓的pooled_output实际上是:

class BertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        # 从hidden_size空间映射到另一个hidden_size空间
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        # 经过tanh激活函数
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # 取最后一层隐藏状态第一个token: [cls]
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output

回到我们的modeling.py,训练时利用forward方法;推理时利用predict方法,支持批处理。输入是表示语句对的元组。

arguments.py:

from dataclasses import dataclass, field
from typing import Optional

import os


@dataclass
class ModelArguments:
    model_name_or_path: str = field(
        metadata={
            "help": "Path to pretrained model or model identifier from huggingface"
        }
    )
    config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "Pretrained config name or path if not the same as model_name"
        },
    )
    tokenizer_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "Pretrained tokenizer name or path if not the same as model_name"
        },
    )


@dataclass
class DataArguments:
    train_data_path: str = field(
        default=None, metadata={"help": "Path to train corpus"}
    )
    eval_data_path: str = field(default=None, metadata={"help": "Path to eval corpus"})
    max_length: int = field(
        default=512,
        metadata={
            "help": "The maximum total input sequence length after tokenization for input text."
        },
    )

    def __post_init__(self):
        if not os.path.exists(self.train_data_path):
            raise FileNotFoundError(
                f"cannot find file: {self.train_data_path}, please set a true path"
            )

        if not os.path.exists(self.eval_data_path):
            raise FileNotFoundError(
                f"cannot find file: {self.eval_data_path}, please set a true path"
            )

定义了模型和数据相关参数。

dataset.py:

from torch.utils.data import Dataset
from transformers import PreTrainedTokenizer, DataCollatorWithPadding

from datasets import Dataset as dt

from typing import Any

from utils import build_dataframe_from_csv


class PairDataset(Dataset):
    def __init__(
        self, data_path: str, tokenizer: PreTrainedTokenizer, max_len: int
    ) -> None:

        df = build_dataframe_from_csv(data_path)
        self.dataset = dt.from_pandas(df, split="train")

        self.total_len = len(self.dataset)
        self.tokenizer = tokenizer

        self.max_len = max_len

    def __len__(self):
        return self.total_len

    def __getitem__(self, index) -> dict[str, Any]:
        query1 = self.dataset[index]["query1"]
        query2 = self.dataset[index]["query2"]
        label = self.dataset[index]["label"]

        encoding = self.tokenizer.encode_plus(
            query1,
            query2,
            truncation="only_second",
            max_length=self.max_len,
            padding=False,
        )

        encoding["label"] = label

        return encoding

数据集类考虑了LCQMC数据集的格式,即成对的语句和一个数值标签。类似:

Hello.	Hi.	1
Nice to see you.	Nice	0

这里数据集的处理和之前的有所不同,主要是调用encode_plus将文本对拼接在一起,并且仅阶段第二个文本。

这里没有进行padding,交给DataCollatorWithPadding来做。

trainer.py:

import torch
from transformers.trainer import Trainer

from typing import Optional
import os
import logging

TRAINING_ARGS_NAME = "training_args.bin"


from modeling import SentenceBert

logger = logging.getLogger(__name__)


class CrossTrainer(Trainer):

    def compute_loss(self, model: SentenceBert, inputs, return_outputs=False):
        labels = inputs.pop("labels")

        return model(inputs, labels)["loss"]

    def _save(self, output_dir: Optional[str] = None, state_dict=None):
        # If we are executing this function, we are the process zero, so we don't check for that.
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info(f"Saving model checkpoint to {output_dir}")

        self.model.save_pretrained(output_dir)

        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))

继承🤗 Transformers的Trainer类,重写了compute_loss_save方法。

这样我们就可以利用🤗 Transformers来训练我们的模型了。

utils.py:

import torch
import pandas as pd
from scipy.stats import pearsonr, spearmanr
from typing import Tuple


def build_dataframe_from_csv(dataset_csv: str) -> pd.DataFrame:
    df = pd.read_csv(
        dataset_csv,
        sep="\t",
        header=None,
        names=["query1", "query2", "label"],
    )

    return df


def compute_spearmanr(x, y):
    return spearmanr(x, y).correlation


def compute_pearsonr(x, y):
    return pearsonr(x, y)[0]


def find_best_acc_and_threshold(scores, labels, high_score_more_similar: bool):
    """Copied from https://github.com/UKPLab/sentence-transformers/tree/master"""
    assert len(scores) == len(labels)
    rows = list(zip(scores, labels))

    rows = sorted(rows, key=lambda x: x[0], reverse=high_score_more_similar)

    max_acc = 0
    best_threshold = -1
    # positive examples number so far
    positive_so_far = 0
    # remain negative examples
    remaining_negatives = sum(labels == 0)

    for i in range(len(rows) - 1):
        score, label = rows[i]
        if label == 1:
            positive_so_far += 1
        else:
            remaining_negatives -= 1

        acc = (positive_so_far + remaining_negatives) / len(labels)
        if acc > max_acc:
            max_acc = acc
            best_threshold = (rows[i][0] + rows[i + 1][0]) / 2

    return max_acc, best_threshold


def metrics(y: torch.Tensor, y_pred: torch.Tensor) -> Tuple[float, float, float, float]:
    TP = ((y_pred == 1) & (y == 1)).sum().float()  # True Positive
    TN = ((y_pred == 0) & (y == 0)).sum().float()  # True Negative
    FN = ((y_pred == 0) & (y == 1)).sum().float()  # False Negatvie
    FP = ((y_pred == 1) & (y == 0)).sum().float()  # False Positive
    p = TP / (TP + FP).clamp(min=1e-8)  # Precision
    r = TP / (TP + FN).clamp(min=1e-8)  # Recall
    F1 = 2 * r * p / (r + p).clamp(min=1e-8)  # F1 score
    acc = (TP + TN) / (TP + TN + FP + FN).clamp(min=1e-8)  # Accurary
    return acc, p, r, F1


def compute_metrics(predicts, labels):
    return metrics(labels, predicts)

定义了一些帮助函数,从sentence-transformers库中拷贝了寻找最佳准确率阈值的实现find_best_acc_and_threshold

除了准确率,还计算了句嵌入的余弦相似度与真实标签之间的斯皮尔曼等级相关系数指标。

最后定义训练和测试脚本。

train.py:

from transformers import (
    set_seed,
    HfArgumentParser,
    TrainingArguments,
    DataCollatorWithPadding,
)


import logging
import os
from pathlib import Path

from datetime import datetime

from modeling import SentenceBert
from trainer import CrossTrainer
from arguments import DataArguments, ModelArguments
from dataset import PairDataset

logger = logging.getLogger(__name__)
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)


def main():
    parser = HfArgumentParser((TrainingArguments, DataArguments, ModelArguments))
    training_args, data_args, model_args = parser.parse_args_into_dataclasses()

    output_dir = f"{training_args.output_dir}/{model_args.model_name_or_path.replace('/', '-')}-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}"
    training_args.output_dir = output_dir

    logger.info(f"Training parameters {training_args}")
    logger.info(f"Data parameters {data_args}")
    logger.info(f"Model parameters {model_args}")

    set_seed(training_args.seed)

    model = SentenceBert(
        model_args.model_name_or_path,
        max_length=data_args.max_length,
        trust_remote_code=True,
    )

    tokenizer = model.tokenizer

    train_dataset = PairDataset(
        data_args.train_data_path,
        tokenizer,
        data_args.max_length,
    )

    eval_dataset = PairDataset(
        data_args.eval_data_path,
        tokenizer,
        data_args.max_length,
    )

    trainer = CrossTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        data_collator=DataCollatorWithPadding(tokenizer),
        tokenizer=tokenizer,
    )
    Path(training_args.output_dir).mkdir(parents=True, exist_ok=True)

    trainer.train()
    trainer.save_model()


if __name__ == "__main__":
    main()

训练

基于train.py定义了train.sh传入相关参数:

timestamp=$(date +%Y%m%d%H%M)
logfile="train_${timestamp}.log"

# change CUDA_VISIBLE_DEVICES
CUDA_VISIBLE_DEVICES=1 nohup python train.py \
    --model_name_or_path=hfl/chinese-macbert-large \
    --output_dir=output \
    --train_data_path=data/train.txt \
    --eval_data_path=data/dev.txt \
    --num_train_epochs=3 \
    --save_total_limit=5 \
    --learning_rate=2e-5 \
    --weight_decay=0.01 \
    --warmup_ratio=0.01 \
    --bf16=True \
    --save_strategy=epoch \
    --per_device_train_batch_size=64 \
    --report_to="none" \
    --remove_unused_columns=False \
    --max_length=128 \
    > "$logfile" 2>&1 &

以上参数根据个人环境修改,这里使用的是哈工大的chinese-macbert-large预训练模型。

注意:

  • 通过bf16=True可以加速训练同时不影响效果,不支持可以尝试fp16
  • 其他参数可以自己调整。
100%|██████████| 18655/18655 [1:15:47<00:00,  5.06it/s]
100%|██████████| 18655/18655 [1:15:47<00:00,  4.10it/s]
{'loss': 0.0464, 'grad_norm': 4.171152591705322, 'learning_rate': 1.6785791639592811e-07, 'epoch': 4.96}
{'train_runtime': 4547.2543, 'train_samples_per_second': 262.539, 'train_steps_per_second': 4.102, 'train_loss': 0.11396670312096753, 'epoch': 5.0}

这里训练了5轮,为了测试效果,但发现实际上3轮的结果还好一些,因此最终拿它来测试。

测试

test.py: 测试脚本见后文的完整代码。

test.sh:

# change CUDA_VISIBLE_DEVICES
CUDA_VISIBLE_DEVICES=0 python test.py \
    --model_name_or_path=output/checkpoint-11193 \
    --test_data_path=data/test.txt

输出:

TestArguments(model_name_or_path='output/checkpoint-11193', test_data_path='data/test.txt', max_length=64, batch_size=128)
Running Inference: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [00:19<00:00,  5.05it/s]
max_acc: 0.8954, best_threshold: 0.924443
spearman corr: 0.7996 |  pearson_corr corr: 0.8021 | compute time: 19.44s
accuracy=0.895 precision=0.911 recal=0.876 f1 score=0.8934

测试集上的准确率达到89.5%,spearman系数达到79.96,这两个指标都是本系列文章的SOTA结果,但是没有期望的那么高。可能一般用cross-encoder 模型做精排,选出top-k啥的。

下面是近期几种训练方法的一个对比:

模型(目标函数)准确率(%)spearman(*100)pearson(*100)
Bi-Encoder(Classifier)89.1879.8275.14
Bi-Encoder(Regression)88.3277.9576.68
Bi-Encoder(Contrastive)88.8177.9557.01
Bi-Encoder(CoSENT)89.4079.8977.03
Cross-Encoder89.5479.9680.21

完整代码

完整代码: →点此←

参考

  1. [论文笔记]Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值