(24)目标检测算法之YOLOv6 (2)量化与部署详解

本文详细介绍了YOLOv6的量化训练方法,包括基础版的PTQ量化、进阶版的RepOPT策略以及量化感知训练。此外,还阐述了模型的ONNX导出、TensorRT部署和精度测试过程,并提供了C++和OpenVINO的部署示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测算法之YOLOv6 (2)量化与部署详解

    1. 详解量化训练方式
    1. 详解部署方法:onnx 、openvnio、 tensorrt
    1. YLOLOv6目前发布的模型:从模型大小方面来看,可分为微小型(Nano),小(Small),中(Medium),大模型(Large);从用户使用场景方面来看,可分为基础版(base),进阶版(advance),高精版(high-precision)。
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明月醉窗台

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值