前言
本文介绍了空间和通道重构卷积(SCConv)及其在YOLOv11中的结合应用。SCConv由空间重构单元(SRU)和通道重构单元(CRU)组成,能有效减少特征冗余。SRU采用分离 - 重构策略,抑制空间冗余;CRU运用分割 - 变换 - 融合策略,减少通道冗余。SCConv是即插即用的架构单元,可替换标准卷积。我们将C3k2_SCConv2023集成进YOLOv11,替换部分模块。实验表明,改进后的YOLOv11在降低复杂性和计算成本的同时,达到了更好的目标检测性能。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
文章目录
介绍

摘要
卷积神经网络(CNNs)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取了冗余特征。近期的研究要么压缩训练有素的大规模模型,要么探索设计精良的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余性来进行CNN压缩,并提出了一种高效的卷积模块,称为SCConv(空间和通道重构卷积),以减少冗余计算并促进代表性特征学习。所提出的SCConv由两个单元组成:空间重构单元(SRU)和通道重构单元(CRU)。SRU使用分离-重构方法来抑制空间冗余,而CRU使用分割-变换-融合策略来减少通道冗余。此外,SCConv是一个即插即用的架构单元,可以直接用于替换各种卷积神经网络中的标准卷积。实验结果表明,嵌入SCConv的模型能够通过减少冗余特征,在显著降低复杂性和计算成本的同时,达到更好的性能。
创新点
-
空间重构单元(SRU)
-
通道重构单元(CRU)
如下图,SCConv 由两个单元组成,即空间重构单元 (SRU) 和信道重构单元 (CRU) ,两个单元按顺序排列。输入的特征 X 先经过 空间重构单元 ,得到空间细化的特征Xw 。再经过 通道重构单元 ,得到通道提炼的特征 Y 作为输出。
订阅专栏 解锁全文
528

被折叠的 条评论
为什么被折叠?



