YOLOv11改进 - C3k2融合 | C3k2融合SCConv空间和通道重建卷积(Spatial and Channel Reconstruction Convolution)实现即插即用式空间与

部署运行你感兴趣的模型镜像

前言

本文介绍了空间和通道重构卷积(SCConv)及其在YOLOv11中的结合应用。SCConv由空间重构单元(SRU)和通道重构单元(CRU)组成,能有效减少特征冗余。SRU采用分离 - 重构策略,抑制空间冗余;CRU运用分割 - 变换 - 融合策略,减少通道冗余。SCConv是即插即用的架构单元,可替换标准卷积。我们将C3k2_SCConv2023集成进YOLOv11,替换部分模块。实验表明,改进后的YOLOv11在降低复杂性和计算成本的同时,达到了更好的目标检测性能。

文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总

专栏链接: YOLOv11改进专栏

介绍

image-20240122101047516

摘要

卷积神经网络(CNNs)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取了冗余特征。近期的研究要么压缩训练有素的大规模模型,要么探索设计精良的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余性来进行CNN压缩,并提出了一种高效的卷积模块,称为SCConv(空间和通道重构卷积),以减少冗余计算并促进代表性特征学习。所提出的SCConv由两个单元组成:空间重构单元(SRU)和通道重构单元(CRU)。SRU使用分离-重构方法来抑制空间冗余,而CRU使用分割-变换-融合策略来减少通道冗余。此外,SCConv是一个即插即用的架构单元,可以直接用于替换各种卷积神经网络中的标准卷积。实验结果表明,嵌入SCConv的模型能够通过减少冗余特征,在显著降低复杂性和计算成本的同时,达到更好的性能。

创新点

  1. 空间重构单元(SRU)

  2. 通道重构单元(CRU)

如下图,SCConv 由两个单元组成,即空间重构单元 (SRU) 和信道重构单元 (CRU) ,两个单元按顺序排列。输入的特征 X 先经过 空间重构单元 ,得到空间细化的特征Xw 。再经过 通道重构单元 ,得到通道提炼的特征 Y 作为输出。

您可能感兴趣的与本文相关的镜像

Yolo-v8.3

Yolo-v8.3

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔改工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值