YOLOv11 改进 - 注意力机制 | DAT (Deformable Attention) 可变形注意力:动态感知关键区域破解固定注意力模式,增强特征捕捉能力

部署运行你感兴趣的模型镜像

前言

本文介绍了Deformable Attention Transformer(DAT)及其在YOLOv11中的结合应用。DAT是一种用于图像分类和密集预测任务的通用主干模型,其核心是可变形自注意力模块,通过数据依赖的位置选择、灵活的偏移学习、全局键共享和空间自适应机制,解决了传统Transformer在扩大感受野时带来的内存、计算成本高和特征受无关部分影响等问题。该模块通过对键和值进行DCN偏移后再计算注意力,提升了性能。我们将DAttention模块集成进YOLOv11,替代部分原有模块。实验表明,DAT在综合基准测试中取得了持续改进的结果。

文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总

专栏链接: YOLOv11改进专栏

介绍

image-20240525100636046

摘要

Transformer架构近年来在各类视觉任务中展现出卓越性能表现,其较大的甚至全局感受野赋予模型相较于卷积神经网络(CNN)更强的表征学习能力。然而,单纯扩展感受野规模亦引发若干关键问题:一方面,采用密集注意力机制(如ViT中所用)将导致显著的内存与计算开销,且特征提取过程易受目标区域外无关信息的干扰;另一方面,PVT或Swin Transformer等架构采用的稀疏注意力机制对数据分布不敏感,可能制约其长距离依赖关系建模能力。针对上述挑战,本文提出一种新型可变形自注意力模块,该模块基于数据驱动方式自适应选择自注意力中键值对的位置分布。这种灵活的设计策略使自注意力机制能够动态聚焦于语义相关区域,从而捕获更具信息量的特征表示。基于此创新模块,我们构建了Deformable Attention Transformer(可变形注意力Transformer)架构,该通用骨干网络适用于图像分类及密集预测任务,并集成可变形注意力机制。大量实验验证表明,所提出模型在综合性基准测试中实现了持续性的性能提升,相关代码已在https://github.com/LeapLabTHU/DAT开源发布。

文章链接

论文地址:

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔改工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值