前言
本文介绍了Deformable Attention Transformer(DAT)及其在YOLOv11中的结合应用。DAT是一种用于图像分类和密集预测任务的通用主干模型,其核心是可变形自注意力模块,通过数据依赖的位置选择、灵活的偏移学习、全局键共享和空间自适应机制,解决了传统Transformer在扩大感受野时带来的内存、计算成本高和特征受无关部分影响等问题。该模块通过对键和值进行DCN偏移后再计算注意力,提升了性能。我们将DAttention模块集成进YOLOv11,替代部分原有模块。实验表明,DAT在综合基准测试中取得了持续改进的结果。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
介绍

摘要
Transformer架构近年来在各类视觉任务中展现出卓越性能表现,其较大的甚至全局感受野赋予模型相较于卷积神经网络(CNN)更强的表征学习能力。然而,单纯扩展感受野规模亦引发若干关键问题:一方面,采用密集注意力机制(如ViT中所用)将导致显著的内存与计算开销,且特征提取过程易受目标区域外无关信息的干扰;另一方面,PVT或Swin Transformer等架构采用的稀疏注意力机制对数据分布不敏感,可能制约其长距离依赖关系建模能力。针对上述挑战,本文提出一种新型可变形自注意力模块,该模块基于数据驱动方式自适应选择自注意力中键值对的位置分布。这种灵活的设计策略使自注意力机制能够动态聚焦于语义相关区域,从而捕获更具信息量的特征表示。基于此创新模块,我们构建了Deformable Attention Transformer(可变形注意力Transformer)架构,该通用骨干网络适用于图像分类及密集预测任务,并集成可变形注意力机制。大量实验验证表明,所提出模型在综合性基准测试中实现了持续性的性能提升,相关代码已在https://github.com/LeapLabTHU/DAT开源发布。
文章链接
论文地址:
订阅专栏 解锁全文
29

被折叠的 条评论
为什么被折叠?



