【YOLOv10改进-注意力机制】DAT(Deformable Attention):可变形注意力

YOLOv10目标检测创新改进与实战案例专栏

改进目录: YOLOv10有效改进系列及项目实战目录:卷积,主干 注意力,检测头等创新机制

专栏链接: YOLOv10 创新改进有效涨点

介绍

image-20240223140912896

摘要

Transformer最近在各种视觉任务中表现优异。全局的感知域使Transformer模型比CNN具有更强的表示能力。 然而,简单地扩大感受野也引起了一些问题。一方面,使用较为密集的注意力,例如在ViT中,会导致过多的内存和计算成本,并且功能可能会受到超出兴趣区域的无关部分的影响。另一方面,在PVT或Swin Transformer中采用的较为稀疏的注意机制是与数据无关的,这可能会限制对于长距离关系的建模能力。 为了缓解这些问题,论文提出了一种新的可变形的Self Attention模块,在自我注意模块中,KV键值对与数据相关。这种灵活的方案使Self Attention模块能够关注相关区域,并捕获更多的信息特性。 大量实验表明,我们的模型在综合基准上取得了持续改进的结果。代码可在 https://github.com/LeapLabTHU/DAT 获得。

创新点

可变形自注意力模块的创新点包括:

  1. 通过数据相关的方式选择关键和数值对:与传统的自注意力模块不同,可变形自注意力模块可以根据数据的特点选择关键和数值对,使得模型能够更灵活地关注相关区域并捕获更多信息。
  2. 提高了模型的灵活性和效率:可变形自注意力模块通过引入偏移网络,使得候选的关键/数值向重要区域移动,从而增强了原始自注意力模块的灵活性和效率,有助于捕获更多信息。
  3. 适用于视觉识别的背骨骼:可变形自注意力模块作为视觉骨干网络的特征提取器,能够更好地提取图像特征,有助于改善图像分类、语义分割和目标检测等任务的性能。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

这个改进型模型采用了可变形自注意力机制,允许在限定的注意力范围内灵活选择更相关的区域。这样,模型能够根据数据为每个查询动态学习不同的采样点,从而在保持高效性的同时显著提升性能。相较于传统图像处理模型,这种方法在图像分类和密集预测任务中表现出更优异的应用效果,实现了在种类分类、目标检测和分割等任务上的最先进(SOTA)性能,超越了Swin Transformer。

DAT的核心是其可变形注意力(DA)部分,它通过专注于特征图中关键区域来有效建模令牌间的关系。这些关注区域是通过学习得到的可变形采样点来确定,这些点来自于配备偏移网络的查询。

不同于可变形卷积网络(DCN),后者在特征图中学习不同像素周围的区域,DAT学习与特定查询无关的区域组合。最近研究发现,对于不同的查询,全局注意力往往产生相似的模式,这促使关键和值在重要区域集中,从而实现更高效的计

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值