SLAM之路-高斯牛顿法Cpp实现(元素视角)

版权声明:Davidwang原创文章,严禁用于任何商业途径,授权后方可转载。

  在SLAM优化算法中,最速下降法由于下降路线呈垂直Z之形方式,其在离目标值较远时下降速度快,越目标值越近收敛速度越慢;牛顿法由于要求解二阶海森矩阵(Hessian),导致在数据量较大维度较高时计算量大幅度增加。因此,在实际使用中,我们更倾向于使用高斯牛顿法和列文伯格-马夸尔特法(还有DogLeg法等)。

  本节不尝试推导高斯牛顿法(推导也很简单),只使用其结论,即增量方程:
J ( x ) J T ( x ) Δ x = − J ( x ) f ( x ) J(x)J^T(x)\Delta x=-J(x)f(x) J(x)JT(x)Δx=J(x)f(x)
  该式可简写为:
H Δ x = b H \Delta x=b HΔx=b

  本节我们对高斯牛顿法实际使用进行示例,假设有若干观测数据N,这些观测数据带有高斯分布的噪声值,现在要求选定一个函数模型拟合这些观测数据,设选择的优化模型函数为:
f ( x ) = a x + e x p ( b x + c ) f(x) = ax + exp(bx + c) f(x)=ax+exp(bx+c)
  所以误差值函数为:
e i = y i − ( a x i + e x p ( b x i + c ) ) e_i = y_i -( ax_i + exp(bx_i + c)) ei=yi(axi+exp(bxi+c))
  则每个误差分量与状态变量的导数为:

∂ e i ∂ a = x \frac{\partial e_i}{\partial a} = x aei=x

∂ e i ∂ b = x ⋅ e x p ( b x + c ) \frac{\partial e_i}{\partial b} = x \cdot exp(bx+c) bei=xexp(bx+c)

∂ e i ∂ c = e x p ( b x + c ) \frac{\partial e_i}{\partial c} = exp(bx+c) cei=exp(bx+c)

  于是每一项的雅克比(Jacobian)为:
J i = [ ∂ e i ∂ a , ∂ e i ∂ b , ∂ e i ∂ c ] J_i = \begin{bmatrix} \frac{\partial e_i}{\partial a} , & \frac{\partial e_i}{\partial b} , & \frac{\partial e_i}{\partial c} \end{bmatrix} Ji=[aei,bei,cei]

  因此,对若干观察数据N,总的高斯牛顿增量方程为:

( ∑ i = 1 N J i ⋅ J i T ) Δ x k = ∑ i = 1 N ( − J i ⋅ e i ) \left ( \sum_{i=1}^{N}{J_i}^{} \cdot {J_i}^{T} \right )\Delta x_k = \sum_{i=1}^{N}(-{J_i}^{} \cdot e_i) (i=1NJiJiT)Δxk=i=1N(Jiei)

  在得到增量公式之后,我们可以解出 Δ x k \Delta x_k Δxk,然后就可以迭代优化了。在本示例具体操作过程中,我们利用真实参数生成N个真值数据,当然,这N个真值数据都加了高斯噪声,然后利用高斯牛顿法进行优化,详细的代码如下:

/*
* Gauss-Newton iteration method
* author:Davidwang
* date  :2020.08.24
*/
#include <iostream>
#include <chrono>
#include <opencv2/opencv.hpp>
#include <Eigen/Core>
#include <Eigen/Dense>

using namespace std;
using namespace Eigen;

void GN(const int, vector<double> &, vector<double> &, double &, double &, double &, double const);

int main(int argc, char **argv)
{
    double ar = 18.0, br = 2.0, cr = 1.0; // 真实参数值
    double ae = 2.0, be = 4.0, ce = 3.0;  // 估计参数值
    int N = 50;                           // 数据点
    double w_sigma = 1.0;                 // 噪声Sigma值
    double inv_sigma = 1.0 / w_sigma;     // 信息值
    cv::RNG rng;                          // OpenCV随机数产生器

    vector<double> x_data, y_data; // 生成真值数据
    for (int i = 0; i < N; i++)
    {
        double x = i / 100.0;
        x_data.push_back(x);
        y_data.push_back(ar * x + exp(br * x + cr) + rng.gaussian(w_sigma * w_sigma));
    }

    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    GN(N, x_data, y_data, ae, be, ce, inv_sigma);
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);

    cout << "solve time cost = " << time_used.count() << " seconds. " << endl;
    cout << "estimated abc = " << ae << ", " << be << ", " << ce << endl;
    return 0;
}

///高斯牛顿法,N数据个数,x:X值,y:Y值,ae:a估计值,be:b估计值,ce:c估计值,inv_sigma:信息值(1/σ)
void GN(const int N, vector<double> &x, vector<double> &y, double &ae, double &be, double &ce, double const inv_sigma)
{
    int iterations = 50;           // 迭代次数
    double cost = 0, lastCost = 0; // 本次迭代的cost和上一次迭代的cost
    double xi, yi, error, e;

    for (int iter = 0; iter < iterations; iter++)
    {
        Matrix3d H = Matrix3d::Zero();
        Vector3d b = Vector3d::Zero();
        cost = 0;

        for (int i = 0; i < N; i++)
        {
            xi = x[i], yi = y[i];            // 第i个数据点
            e = ae * xi + exp(be * xi + ce); // 计算估计值
            error = yi - e;                  // 误差
            Vector3d J;                      // 雅可比矩阵
            J[0] = -xi;                      // de/da
            J[1] = -xi * exp(be * xi + ce);  // de/db
            J[2] = -exp(be * xi + ce);       // de/dd

            H += inv_sigma * inv_sigma * J * J.transpose(); //H = J^T * W^{-1} * J,inv_sigma 为信息值,本示例可以去掉
            b += -inv_sigma * inv_sigma * error * J;        //b= -W^{-1} * f(x)*J ,inv_sigma 为信息值,本示例可以去掉

            cost += error * error;

            cout << "The " << iter + 1 << " iteration, The " << i << " factor " << endl;
            cout << "THe Value, x: " << xi << ",y:" << yi << ",e:" << e << ",error:" << error << endl
                 << endl;
        }
        Vector3d dx = H.ldlt().solve(b); // 求解线性方程 HΔx=b
        if (isnan(dx[0]))
        {
            cout << "result is nan!" << endl;
            break;
        }

        if (iter > 0 && cost >= lastCost)
        {
            cout << "cost: " << cost << ">= last cost: " << lastCost << ", break." << endl;
            break;
        }

        ae += dx[0];
        be += dx[1];
        ce += dx[2];

        lastCost = cost;

        cout << "total cost: " << cost << ", \t\tupdate: " << dx.transpose() << "\t\testimated params: " << ae << "," << be << "," << ce << endl;
    }
}

  在代码中,我们使用了ldlt()矩阵分解方法,该方法分解矩阵要求系数矩阵是对称矩阵,根据公式 H = J ( x ) J T ( x ) H=J(x) J^T(x) H=J(x)JT(x),可以简单证明如下:
( J J T ) T = ( J T ) T J T = J J T \left ( JJ^T \right )^T = \left ( J^T \right )^TJ^T = JJ^T (JJT)T=(JT)TJT=JJT

CMakeLists如下:

cmake_minimum_required(VERSION 2.8)
project(gaussNewton)

set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_FLAGS "-std=c++14 -O3")

list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)

# OpenCV
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})

# Eigen
include_directories("/usr/include/eigen3")

add_executable(GN gaussNewton_GN.cpp)
target_link_libraries(GN ${OpenCV_LIBS})


  程序在ubuntu 18.04,OpenCV3.4.11环境下编译通过,高斯牛顿法迭代11次,ae=18.5264、be=2.09878、ce=0.927444,耗时:0.0130971s

  另外,经过实验,我们发现,初始值(ae,ab,ac)的选择很重要,初始值不同时,可能会出现函数不收敛的问题,甚至是发散,这就是因为高斯牛顿法所求的H矩阵可能为奇异矩阵的或者是病态的,增量稳定性差,导致算法不收敛,即使假设所求的H矩阵为非奇异矩阵也非病态,如果步长过大,也会导致局部近似不准确,可能出现不收敛甚至发散的问题。

参考文献

1、高翔《视觉SLAM十四讲》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_DavidWang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值