01 背景
各个公司相继推出大模型, 有开源和不开源,有些技术爱好者也开始心痒难耐,萌生了私有本地模型,甚至有伙伴构建大模型并进行训练的想法, 大模型不仅比拼技术, 也是比拼爹(资源)的存在, 我个人在实战经历经常问自己,到底需要什么样配置才能跑起来这个模型, 完成这个实验目标, 由此引发对估算大模型需要的GPU显存的进一步了解.
02 模型参数量
如下图(来源于网络), 我们经常会看到模型名称带70B、14B、32B等字眼,这些就是表示模型参数的个数, 反映出模型大小, b代表英文单词“billio****n”的意思, 也就是10亿. 所以70B就是700亿个参数左右, 14B就是140亿个参数左右, 32B就是320亿个参数左右. 在大模型以前的时代, 也有一些比较小模型,单位一般都是M(百万)为计算单位, LLM出现之后, 基本模型参数数量基本是以亿为基本单位.
03 参数精度
影响模型占用显存大小,除了参数量, 还有参数精度,所谓参数精度,就是参数的数据类型. 我们之前在《