AI Agent应用 | 私有化部署“智能客服”系统

AI Agent应用探索,以实际应用场景作为背景进行简单路径实现,并对应用场景下进一步深度应用,分别从业务和技术层面展开研究探索;先发散进而总结、整合、提炼出AI Agent。

智能客服应用广发展的成熟,回答问题聊天不是目的,通过客服将业务系统链接起来,业务更高效、服务更精细;客服不仅仅针对客户,是对全业务链的服务。

01

私有化部署的意义

1,不用担心知识库泄露,

2,部署在移动设备上可以离线使用

3,方便内部业务系统打通

4,成本低

02

主要工具

RAGFlow是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。

Ollama 是一个开源的大模型管理工具,它提供了丰富的功能,包括模型的训练、部署、监控等。 通过Ollama,你可以轻松地管理本地的大模型,提高模型的训练速度和部署效率。

Qwen2.5是阿里通义千问团队最新开源的最强AI大模型,具有多种参数规模的模型,包括0.5B、1.5B、3B、7B、14B、32B 和72B。 模型在预训练时使用了最新的大规模数据集,包含多达18 万亿个tokens,Qwen2.5 在自然语言理解、文本生成、编程能力、数学能力等方面都有显著提升。

Docker 是一种轻量级的虚拟化技术,同时是一个开源的应用容器运行环境搭建平台,可以让开发者以便捷方式打包应用到一个可移植的容器中,然后安装至任何运行Linux或Windows等系统的服务器上。

03

知识库训练

支持多种文件类型,如文档、图片等。上传后,RagFlow会对文件进行处理,提取文本内容并生成向量表示。

04

聊天效果展示

法律咨询聊天,只训练了一个“劳动法”文件

医疗咨询聊天,训练了6个QA问答文件,内容比较大,用了一天的时间,效果比较好;

05

后续研究

1,和业务系统打通,回答内容整合业务数据;

2,业务逻辑编排,根据聊天内容进行工作流编排和执行;

3,用户情绪价值判定,根据情绪价值执行工作流;

4,语音输入与输出;

5,自我学习能力;

6,营销能力;

7,数字人;

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《AI大模型入门+进阶学习资源包**》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

### 如何将 Agent 部署到 Hugging Face 平台 为了成功地将 Agent 部署至 Hugging Face 平台,需遵循一系列特定的操作指南。Hugging Face 提供了一个名为 Spaces 的功能,允许用户轻松部署应用程序并共享给他人[^2]。 #### 创建 Hugging Face 账户和仓库 首先,在[Hugging Face 官方网站](https://huggingface.co/)注册账号,并创建一个新的 Repository 来存储即将上传的应用程序代码及相关资源文件。 #### 准备环境与依赖项配置 确保本地环境中已安装 Git 及 Python 解释器。接着克隆刚刚建立好的远程仓库到本地计算机上: ```bash git clone https://huggingface.co/spaces/<your_username>/<repo_name> cd spaces/<your_username>/<repo_name> ``` 编辑 `requirements.txt` 文件来指定项目所需的Python包版本号,这有助于保持不同运行环境下的一致性和稳定性。 #### 编写应用逻辑代码 编写或调整现有的Agent脚本使其能够独立工作于云服务器之上。对于基于Web的服务端口监听部分,建议采用 Flask 或 FastAPI 这样的轻量级框架构建RESTful API接口服务;而对于前端展示页面,则可通过集成Gradio组件快速搭建交互式的图形化操作面板[^4]。 #### 测试本地实例 在推送任何更改之前务必先验证整个系统的正常运作情况。启动虚拟环境后执行以下命令开启调试模式下的HTTP服务器进程: ```bash pip install -r requirements.txt python app.py # 假设主入口函数位于此文件内 ``` 打开浏览器访问 http://localhost:7860 地址确认一切按预期响应无误后再继续下一步骤。 #### 推送更新至远端分支 当所有准备工作都完成后就可以准备同步最新的改动记录回线上空间里去了。记得每次修改完都要及时提交变更日志以便追踪历史版本间的差异变化趋势。 ```bash git add . git commit -m "Initial deployment setup" git push origin main ``` 此时应该可以在个人主页看到新发布的Space条目链接指向刚才所设置的内容了。 #### 发布后的维护事项 发布之后还需要定期关注评论区反馈意见积极改进产品体验质量。另外也要留意官方公告通知有关政策变动可能会影响到现有架构设计的地方提前做好应对措施安排。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值