用大白话,讲一下最近爆火的Deepseek,收藏这一篇就够了!!

前言

1957年10月4日,苏联成功发射了"斯普特尼克1号"人造卫星。消息传出后,从华盛顿到伦敦,整个西方都陷入了震惊和恐慌——因为这意味着:西方国家开始在技术上落后于非西方的国家。

从此之后,"斯普特尼克时刻"也就成了一个专有词汇,特指那些使得西方国家陷入技术落后局面的事件。

现在,"斯普特尼克时刻"又来了:顶着各种制裁,用着远低于美国科技企业的预算,一家中国企业开发的AI大模型,竟然实现了近似于GPT-4o大模型的效果。

更重磅的是:就在今天中午时分,DeepSeek已经登顶了中国和美国的应用商店,超过了ChatGPT,成为了最受欢迎的AI应用。这个历史性的时刻,至少在目前十年内绝无仅有。

这家中国企业,叫幻方量化。他们开发的AI大模型,就是这几天爆火的Deepseek(深度求索)。《黑神话:悟空》背后的那个男人,Yocar冯骥将其称为“国运级别的科技成果”。

今天,我们就来聊聊Deepseek,看它为何能成为AI界的"斯普特尼克"。

1、不传统的技术路线

从技术原理上来说,Deepseek的成功,尤其是最新一代deepseek R1的成功,来自于它所采用的RL强化学习策略,这是它以极低的成本却可以实现和GPT-4o差不多效果的根本原因。

要理解这种颠覆性,得先看清传统AI的局限。

在之前的文章里,我们就认为当下AI的故事很可能已经讲不下去了——因为以GPT为代表的传统AI,其策略的本质是"在人类监督下的猜字谜游戏"——GPT们其实并不会思考,它们虽然会生成看上去还挺靠谱的回答,但它们做出这些回答并不是它们了解事物运行的原理,而是这样回答有更大概率被人类所接受。

这种猜字谜的游戏,最多也就是生成一些"看似靠谱实则无法深究"的东西,根本没有办法投入现实、转化为生产力工具。早期绘画AI经常把人画出六个指头也是类似的原因——AI根本不知道人的手掌上应该有几个指头,它只是生成一个"乍一看还可以"的东西。

但deepseek不一样,deepseek是真的会“思考”,或者说“推理”的。

以现在爆火的deepseek R1来说,它完全抛弃了那种"猜字谜"的训练方式,转而采用了之前在围棋和智能驾驶领域常用的RL策略(强化学习)。

如果说以前的策略是人类告诉AI什么是对的什么是错的,AI只是在人类的指导下对人类进行模仿。那么RL就是人类仅仅起一个"引进门"的作用,剩下的"修行"就全部靠AI自己慢慢学习了。

这种"修行"在最初阶段或许很笨拙,但越训练AI的能力就越强——关键在于AI不需要遵循人类的生理极限。人类要吃饭睡觉,但AI不用,在高性能芯片的加持下,AI训练一年所见识过的棋局、游戏,往往比一个职业棋手、职业电竞玩家十辈子见过的都多——老司机哪怕开一辈子车,最多也就开个几百万公里。但自动驾驶AI只要开始训练,公里数就是以亿为单位计算了。

简而言之就是:RL策略,是真正地让AI学会认识世界、了解事物规律,而不是亦步亦趋地迎合人类的口味——这也就是为什么很多人在看到deepseek的成功后都认为2025年将会是RL强化学习的元年。

没办法,RL策略现在看来确实是太诱人了。

2、技术突破带来的降本增效

当技术路线换道超车,成本结构就会发生核爆式变革。

因为底层的技术路线上颠覆了以GPT为代表的传统AI,所以deepseek R1把性价比拉高到了一个不可思议的程度——相比起硅谷那群人动辄数亿数十亿美金的投资和数万张显卡的超级集群,我们仅仅靠着2000多张显卡和600万美元左右的成本就实现了近似乃至更好的效果。

用美国META公司一位匿名员工的话来说:“META内部一个负责AI项目的高管年薪拿出来,就足够训练deepseek了,而这样高薪的高管,META有几十个。”

…我只能说:跟着这群虫豸在一起,怎么能搞好AI呢?

同时,这波操作直接改写了游戏规则。deepseek的颠覆式创新也向外界传播了一个信息:不需要那么高的投入,也不需要那么多英伟达的GPU,你也可以做出很棒的大模型——OpenAI训练GPT-4耗费约6300万美元和25000张A100显卡,而Deepseek R1仅用600万美元达到可比效果,甚至可能用的还是国产显卡。

数据最能说明问题:RL策略使模型在对话轮次、任务复杂度等维度实现80%的收敛速度提升,数据利用率提高5倍以上。

黄仁勋一觉醒来,感觉自己家的地基被人刨了,因为AI的泡沫眼看着就要被戳破了——在传统技术路径下,90%的算力消耗在试错过程中,而Deepseek的自主学习机制能将无效训练降低60%。RL策略对并行计算的需求较传统架构下降40%,这使得国产显卡在特定计算任务中能达到英伟达GPU 75%的能效比。

这就带来了更大的打击:算力市场上的格局将会被重构——随着华为昇腾910B等国产芯片在RL框架中表现持续优化,美国试图通过A100/H100禁运遏制中国AI发展的策略正加速失效——国产显卡又不是不能用,那我为啥还要高价进口呢?既然如此,那么美国的"小院高墙"的制裁路线还有意义吗?靠芯片靠GPU还能卡住东方大国的脖子吗?

3、deepseek的爆火背后的几点观察

毫无疑问,deepseek确实是取得了巨大的成功,而且使用体验的确远超GPT系列的大模型,尤其是R1版本特有的思考过程,真的不再是单纯模仿人类,而是真的有自己的想法,甚至比人类更全面、更周密。

综上所述,老局有这么几点观察:

第一,RL路线的含金量已经不再需要怀疑,必然会是下一个阶段AI大模型的核心策略。这也意味着我们向着真正的“人工智能”开始了前进。

第二,靠着堆显卡、堆资本来发展AI的“Scaling law”的价值需要被重新审视,这不意味着Scaling law的崩盘,反而可能是Scaling law的二阶段形态。因为虽然定价已经虚高了,并不需要这么多钱也可以实现很棒的效果,但不意味着英伟达就是割韭菜——不得不承认,如果有更好的条件,AI必然会有更大的进步。

第三,AI行业可能真的没有什么核心的护城河,模型技术的超越将会是常态。今天deepseek超越了OpenAI,明天指不定有人也能超越deepseek——整个行业的格局没有固化,中美AI竞争的大局还早着呢。

第四,deepseek的成功确实意味着之前一个阶段里美国的“小院高墙”制裁策略失效了。但对我们来说,硬件上的突破和国产替代之路远未结束。国产GPU还要继续发力,这是基础性的力量,不能因为deepseek的成功,就觉得咱们已经不需要再警惕英伟达的技术优势了。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

DeepSeek全套安装部署资料

在这里插入图片描述

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

<think>好的,用户现在想了解“关注点分离”的概念及其在软件开发中的意义,并要求用简单的语言解释。用户之前的问题是关于Shader、Program和渲染流程,现在转向软件开发原则,特别是关注点分离(Separation of Concerns, SoC)。我需要结合用户提供的引用内容,尤其是引用[3]提到了SoC,引用[4]也涉及到分层和可见性控制,这些都可能与SoC相关。 首先,我需要明确关注点分离的定义。根据引用[3],SoC是软件开发中的一项重要原则,可能属于GRASP(通用责任分配原则)的一部分。用户提供的引用中,引用[2]提到了DRY和SOLID原则,但没有直接提到SoC,但引用[4]提到分层设计,控制内部可见性,这可能与SoC有关联,比如在架构设计中的分层就是关注点分离的一种体现。 接下来,我需要用简单易懂的语言解释SoC。用户希望用简单语言,所以需要避免技术术语,多用比喻或日常例子。例如,把软件比作餐厅,不同的部门负责不同任务,如厨房做菜,服务员接待客人,收银处理付款,这样各司其职,互不干扰,这就是关注点分离。 然后,要结合用户提供的引用中的例子。比如引用[5]中的代码示例,函数countEmptyLinesInFile将文件读取和空行计数耦合在一起,不符合SoC。改进后的例子将读取数据和业务逻辑分开,这就是应用SoC的实例。需要解释为什么这样的设计更好,比如提高可维护性、复用性等。 另外,引用[4]提到分层设计,控制各层的可见性,这也是SoC的应用。比如在软件架构中,将数据访问层、业务逻辑层和表示层分离,每层只关注自己的职责,减少相互依赖。 同时,要提到SoC与其他原则的关系,比如KISS、DRY、SOLID,尤其是引用[2]和[3]提到的这些原则,说明它们如何共同促进代码质量。 还要注意用户可能的需求:他们可能在实际开发中遇到代码难以维护或功能混杂的问题,想通过SoC来解决。因此,需要给出实际应用场景和好处,比如模块化开发、团队协作、测试维护等。 最后,检查是否遗漏了用户提供的引用中的相关点,确保引用[3]、[4]、[5]的内容被合理引用,并在回答末尾添加引用标识。比如引用[3]提到SoC是GRASP的一部分,引用[5]的代码示例作为反面教材和改进案例,引用[4]的分层架构作为实际应用。 总结回答结构:定义SoC,比喻解释,代码示例分析,实际应用场景,与其他原则的关系,好处总结,相关问题扩展。</think>### **关注点分离原则(Separation of Concerns, SoC)的通俗解释** --- #### **1. 一句话定义** **关注点分离**(SoC)是软件设计中“**各司其职**”的原则,核心思想是**将复杂问题拆解为多个独立的小问题**,每个部分只专注于解决一件事[^3]。 --- #### **2. 生活中的类比** 想象一家餐厅: - **厨房**只负责做菜 - **服务员**只负责接待顾客 - **收银台**只处理付款 如果让厨师同时做菜、端盘子、算账,餐厅会混乱不堪。同样,**软件中的每个模块/组件也应专注于单一职责**。 --- #### **3. 代码中的典型案例** ##### **反面教材**(引用[5]的代码) ```go // 函数既读取文件,又统计空行(耦合了两个职责) func countEmptyLinesInFile(filename string) (int, error) { file, err := os.Open(filename) // 职责1:文件操作 if err != nil { return 0, err } // 职责2:业务逻辑(统计空行) scanner := bufio.NewScanner(file) count := 0 for scanner.Scan() { if strings.TrimSpace(scanner.Text()) == "" { count++ } } return count, nil } ``` **问题**:文件读取与业务逻辑混杂,难以复用或修改。 ##### **改进后**(应用SoC) ```go // 职责1:文件读取(纯数据获取) func readLines(filename string) ([]string, error) { file, err := os.Open(filename) if err != nil { return nil, err } defer file.Close() var lines []string scanner := bufio.NewScanner(file) for scanner.Scan() { lines = append(lines, scanner.Text()) } return lines, scanner.Err() } // 职责2:业务逻辑(统计空行) func countEmptyLines(lines []string) int { count := 0 for _, line := range lines { if strings.TrimSpace(line) == "" { count++ } } return count } ``` **优势**: - 文件读取逻辑可复用(如统计其他数据) - 统计逻辑可独立测试(无需真实文件) - 修改文件来源(如从网络读取)不影响业务逻辑 --- #### **4. 实际应用场景** 1. **分层架构**(引用[4]的层间关系) - **数据层**:只处理数据库操作 - **业务层**:只处理计算逻辑 - **展示层**:只处理UI交互 *示例*:修改数据库类型时,只需改动数据层,其他层不受影响。 2. **前端开发** - **HTML**:定义内容结构 - **CSS**:控制样式外观 - **JavaScript**:实现交互逻辑 3. **微服务架构** - 订单服务、支付服务、库存服务各自独立部署,通过API通信。 --- #### **5. 与其他原则的关系** | 原则 | 与SoC的关联 | |------------|---------------------------------------------| | **KISS** | 拆分复杂问题后,每个小问题更简单(引用[2]) | | **DRY** | 分离后的模块更易复用,减少重复代码(引用[2]) | | **SOLID** | 单一职责原则(SRP)是SoC的具体实现(引用[3]) | --- #### **6. 为什么要这样做?** - **降低复杂度**:人类大脑更擅长处理小问题 - **提高可维护性**:修改一个模块不会“牵一发而动全身” - **促进协作**:团队成员可并行开发不同模块 - **便于测试**:独立模块更容易编写单元测试 --- ### **相关问题** 1. 如何判断一个模块是否违背了关注点分离原则? 2. 在敏捷开发中如何平衡SoC与快速迭代的需求? 3. 关注点分离与微服务拆分粒度有什么关系?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值