半闲居士视觉SLAM十四讲笔记(3)三维空间刚体运动 - part 3 旋转向量、欧拉角、四元数

本系列文章由 youngpan1101 出品,转载请注明出处。
文章链接: http://blog.csdn.net/youngpan1101/article/details/71086851
作者:宋洋鹏(youngpan1101)
邮箱: yangpeng_song@163.com


-W350_2.gif-2.gif
该讲详细资料下载链接 【Baidu Yun】【Video】【Code

若您觉得本博文对您有帮助,请支持高博的新书《视觉SLAM十四讲》,【点击购买
若您觉得本博文对您有帮助,请支持高博的新书《视觉SLAM十四讲》,【点击购买
若您觉得本博文对您有帮助,请支持高博的新书《视觉SLAM十四讲》,【点击购买


三维空间的刚体运动描述方式

旋转向量
  • 旋转矩阵表示方法的
  • 旋转矩阵用 9 个量表达了 3 自由度的变换,该表达方式是 的(编程会浪费存储空间)。
  • 旋转矩阵自身为正交矩阵且行列式为 1 的这些 会给矩阵的估计或优化带来困难。
  • 旋转向量(亦称轴角,Axis-Angle)表示三维旋转
    • 这种表示法只需一个三维向量即可,该表示方法没有约束。
    • 旋转轴为 n ,角度为 θ 的旋转对应的旋转向量为
      w=θn(3.11)

      旋转矩阵旋转向量 的转换关系:
      • (由罗德里格斯公式(Rodrigues’s Formula)表明):
        R=cosθI+(1cosθ)nnT+sinθn(3.12)

        式 (3.12) 的符号 是向量到反对称矩阵的转换符。

        • 对于转角 θ ,有:
          tr(R)=cosθtr(I)+(1cosθ)tr(nnT)+sinθtr(n)=1+2cosθ(3.13)

          所以:
          θ=arccos(tr(R)12)(3.14)
        • 由于旋转轴上的向量在旋转后不会发生变化,有
          Rn=1n(3.15)

          所以转轴 n 是矩阵 R 特征值 1 对应的特征向量,求解此方程,再归一化,即可得到旋转轴。
  • 旋转向量旋转矩阵 只是表达方式不同,表达的东西是一样的。

——————————– 分割线<< >>分割线 ——————————–


欧拉角
  1. 旋转矩阵、旋转向量很难让人直观地知道物体是如何进行旋转的。
  2. 欧拉角提供了一种非常直观的方式来描述旋转,它使用三个分离的转角,即
  3. ZYX 转角相当于把任意旋转分解成以下三个轴上的转角
    • 绕物体的 Z 轴 旋转,得到 偏航角 yaw
    • 绕旋转之后的 Y 轴 旋转,得到 俯仰角 pitch
    • 绕旋转之后的 X 轴 旋转,得到 滚转角 roll
yaw-pitch-rollyawpitchroll
yaw_pitch_roll.pngaircraft_yaw.gifaircraft_yaw.gifaircraft_yaw.gif

4. 欧拉角最大的缺点:万向锁Gimbal Lock

  • ZYX 顺序中,若 Pitch正负90度,则第三次旋转和第一次绕同一个轴,使得系统丢失了一个自由度 —— 存在 奇异性 问题。
    Euler_Gimbal_Lock.png
  • 不适于插值迭代,一般只用于人机交互中。
  • 三个实数来表达三维旋转时,会不可避免地碰到奇异性问题。
  • SLAM 程序中很少直接使用欧拉角表达姿态。

——————————– 分割线<< >>分割线 ——————————–


四元数
旋转矩阵欧拉角、旋转向量四元数
冗余性紧凑,奇异性紧凑,
  • 四元数是一种扩展的复数(复数可表达二维平面的旋转)。
  • 四元数可以表达三维空间旋转。
  • 四元数 q 一个实部三个虚部 组成:
    q=q0+q1i+q2j+q3k(3.16)

    式 (3.16) 中 i,j,k 为四元数的三个虚部。虚部满足以下关系:
    i2=j2=k2=1ij=k,ji=kjk=i,kj=iki=j,ik=j(3.17)
  • 四元数的表示方法:
    q=[s,v],s=q0R,v=[q1,q2,q3]TR3 s 为四元数的实部v 为四元数的虚部
  • 四元数的运算
运算名称公式
加法、减法 qa±qb=[sa±sb,va±vb]
乘法1) qaqb=sasbxaxbyaybzazb+(saxb+xasb+yazbzayb)i+(saybxazb+yasb+zaxb)j+(sazb+xaybxbya+zasb)k
2) 写成向量形式: qaqb=[sasbvTavb,savb+sbva+va×vb]
3) 乘法通常是不可交换的,除非 vavb R3 中共线,那么外积项为零
共轭1) qa=saxaiyajzak=[sa,va]
2) qq=qq=[s2a+vTv,0]
模长1) ||qa||=s2a+x2a+y2a+z2a
2) ||qaqb||=||qa|| ||qb||
1) q1=q||q||2
2) 四元数和自身的逆的乘积为实四元数的 1 qq1=q1q=1
3) 如果 q 为单位四元数,逆和共轭就是同一个量
4) 乘积的逆: (qaqb)1=q1bq1a
数乘 kq=[ks,kv]
点乘 qaqb=sasb+xaxbi+yaybj+zazbk
  • 四元数和角轴的关系
    假设某个旋转是绕单位向量 n=[nx,ny,nz]T 进行了角度为 θ 的旋转

    • q=[cosθ2,nxsinθ2,nysinθ2,nzsinθ2]T(3.18)

      式 (3.18) 的 θ 加上 2π ,得到一个相同的旋转,其对应的四元数变成了 q ,即 任意的旋转都可以由两个互为相反数的四元数表示

    • {θ=2 arccos q0[nx,ny,nz]T=[q1,q2,q3]T/sinθ2(3.19)
  • 四元数和旋转矩阵的关系

    • 设四元数 q=q0+q1i+q2j+q3k ,对应的旋转矩阵为
      R=12q222q232q1q22q0q32q1q3+2q0q22q1q2+2q0q312q212q232q2q32q0q12q1q32q0q22q2q3+2q0q112q212q22(3.20)

    • 设旋转矩阵 R={mij},i,j[1,2,3] ,对应的四元数为
      q0=tr(R)+12,q1=m23m324q0,q2=m31m134q0,q3=m12m214q0(3.21)
  • 用四元数旋转一个空间点
    将三维空间的点用虚四元数来描述: p=[0,x,y,z]=[0,v]
    p 经过一次以四元数 q 表示的旋转后,得到了 p p 为纯虚四元数):
    p=qpq1(3.22)

——————————– 分割线<< >>分割线 ——————————–


旋转矩阵、欧拉角、四元数比较
任务/性质旋转矩阵欧拉角四元数
在坐标系间旋转点不能(必须转换到矩阵)不能(必须转换到矩阵)
连接或增量旋转能,但经常比四元数慢,小心矩阵蠕变的情况不能能,比矩阵快
插值基本上不能能,但可能遭遇万向锁或其他问题Slerp 提供了平滑插值
易用程度
存储内存9个数3个数4个数
对给定方位的表达方式是否唯一不是,有无数多种方法不是,有两种方法,两者为相反数
可能导致非法矩阵蠕变任意三个数都能构成合法的欧拉角可能会出现误差积累,从而产生非法的四元数

ps: 以上表格引自 旋转矩阵、欧拉角、四元数比较

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: 《视觉SLAM十四》第三章主要介绍了视觉SLAM中的关键技术——特征提取和描述子。本章首先介绍了特征点的概念和特征点的选择原则。特征点即图像中具有鲁棒性和区分度的点,可以通过对其进行检测和描述来进行特征匹配和跟踪。在进行特征提取时,作者介绍了常见的特征检测算法,如Harris角点检测、SIFT和SURF算法等,并对其进行了比较和分析。 接着,本章详细阐述了特征描述子的概念和作用。特征描述子是对特征点周围区域的图像信息进行编码,以实现特征匹配和跟踪。常见的特征描述子包括SIFT、SURF和ORB等。作者从描述子的表示形式、计算方式和匹配方法等方面进行了介绍,并对它们进行了比较和评价。同时,还提到了基于二进制描述子的方法,如BRIEF、BRISK和FREAK等。 在特征匹配方面,本章介绍了特征描述子匹配的基本原理和流程。以基于特征点的视觉SLAM为例,作者详细解释了特征点的匹配过程,包括特征点的选择、特征点描述子匹配和筛选等步骤。并介绍了如何通过验证特征点的三角化和PnP求解来估计相机的位姿。 此外,本章还介绍了一些特定场景下的特征点选择和提取策略,如动态环境下的特征点追踪和关键帧选择等。 综上所述,《视觉SLAM十四》第三章主要介绍了特征提取和描述子在视觉SLAM中的重要性和应用。通过对特征点的检测和描述,可以实现特征匹配和跟踪,为后续的相机位姿估计和建图提供基础。该章内容详细且通俗易懂,对于学习和理解视觉SLAM有着重要的指导作用。 ### 回答2: 《视觉SLAM十四-Ch3》主要介绍了视觉SLAM(同时定位与建图)技术的基本原理和实现方法。本章主要涵盖了三维几何表示和变换、相机模型和相机姿态以及特征提取与匹配等内容。 首先,本章介绍了三维几何表示和变换的概念。通过介绍欧氏空间中的点、向量和坐标变换,深入解释了相机在三维空间中的位置和朝向的表示方式。同时,引入了齐次坐标和投影矩阵的概念,为后续的相机模型和姿态估计打下了基础。 其次,本章详细解了相机模型和相机姿态的原理与应用。其中,介绍了针孔相机模型,分析了图像坐标和相机坐标之间的映射关系。通过投影矩阵的推导,给出了透视投影和仿射投影的公式,并解释了相机焦距和主点的含义。此外,还介绍了如何通过计算相机的外参矩阵来估计相机的姿态,以及如何将图像坐标转换为相机坐标。 最后,本章介绍了特征提取与匹配的技术。首先,介绍了角点和边缘点的概念,以及如何利用差分和梯度计算来检测图像中的角点和边缘点。然后,介绍了如何通过特征描述符来表示图像中的特征点,并通过特征匹配算法找到两幅图像之间的对应关系。特征提取与匹配是视觉SLAM中非常重要的步骤,对于后续的相机定位和建图至关重要。 综上所述,《视觉SLAM十四-Ch3》通过系统地介绍了视觉SLAM技术的基本概念和实现方法,包括三维几何表示和变换、相机模型和相机姿态的原理与应用,以及特征提取与匹配的技术。这些内容为读者深入理解和掌握SLAM技术提供了很好的基础。 ### 回答3: 视觉SLAM(Simultaneous Localization and Mapping)是一种通过计算机视觉技术,实现机器智能的同时实时定位和地图构建的方法。在《视觉SLAM十四》第三中,主要介绍了视觉SLAM的基本概念和关键技术。 首先,解了视觉SLAM的理论基础,包括自我运动估计和地图构建两个部分。自我运动估计是通过相邻帧之间的视觉信息,计算相机在三维空间中的运动,从而实现机器的实时定位;地图构建是通过对场景中特征点的观测和跟踪,建立起一个三维空间中的地图。这两个过程相互影响,通过不断迭代优化,实现高精度的定位和地图构建。 接着,解了基于特征的视觉SLAM算法。特征提取与描述是建立视觉SLAM系统的关键步骤,通过提取场景中的特征点,并为其生成描述子,来实现特征点的匹配和跟踪。同时,还介绍了一些常用的特征点提取和匹配算法,如FAST、SIFT等。 在SLAM框架方面,本节还介绍了基于视觉的前端和后端优化。前端主要负责实时的特征跟踪和估计相机运动,后端则是通过优化技术,对前端输出的轨迹和地图进行优化求解,从而提高系统的精度和鲁棒性。 最后,本节提到了几个视觉SLAM的应用场景,如自主导航、增强现实等。这些应用对于实时高精度的定位和地图建立都有着很高的要求,因此,视觉SLAM的技术在这些领域有着广泛的应用前景。 总的来说,《视觉SLAM十四》第三视觉SLAM的基本概念和关键技术进行了系统的介绍。理论基础、特征提取与描述、SLAM框架和应用场景等方面的内容都给出了详细的解释和案例,有助于读者更好地理解和应用视觉SLAM技术。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值