以下是Dify本地化部署的详细教程,涵盖系统要求、依赖安装、源码获取、环境配置、服务启动及常见问题解决等全流程:
一、系统要求与前置准备
- 硬件要求
- CPU:≥2核(推荐4核以上)
- 内存:≥4 GiB(推荐8 GiB以上)
- 操作系统与软件依赖
- Linux:需安装Docker 19.03+、Docker Compose
- macOS:需Docker Desktop,建议分配2个vCPU和8 GiB内存
- Windows:启用WSL 2,建议将代码存储在Linux文件系统中
- Python:服务端需Python 3.12,推荐使用pyenv管理版本
- 数据库:PostgreSQL、Redis、Weaviate(若本地未部署需通过Docker启动)
- 其他工具:FFmpeg(用于OpenAI TTS功能)
二、获取Dify源代码
- 通过Git克隆(推荐)
git clone https://github.com/langgenius/dify.git
cd dify/docker # 进入Docker配置目录
- 手动下载ZIP包
- 访问GitHub仓库:https://github.com/langgenius/dify
- 点击
Code → Download ZIP
,解压后进入dify/docker
目录
三、配置环境变量
- 复制并修改环境文件
cp .env.example .env # 复制示例文件
nano .env # 编辑关键配置项
关键配置项:
- 数据库连接:
POSTGRES_PASSWORD
、REDIS_PASSWORD
- 服务地址:
CONSOLE_API_URL
(默认[http://localhost](http://localhost)
) - 模型API密钥:如OpenAI的
OPENAI_API_KEY
- 高级配置(可选)
- 文件存储:支持S3、阿里云OSS等(配置
STORAGE_TYPE
及相关密钥) - 向量数据库:切换至Weaviate或Qdrant(修改
VECTOR_STORE_TYPE
)
四、启动依赖服务
# 启动PostgreSQL、Redis、Weaviate等基础服务
docker compose up -d db redis weaviate
五、构建与启动Dify服务
-
完整启动所有服务
docker compose up -d # 启动API、Worker、Web前端等容器
预期输出:
- 创建11个容器,包括
api
、worker
、nginx
等
-
验证服务状态
docker ps # 检查所有容器状态是否为"Running"
- 访问
[http://localhost](http://localhost)
进入Web界面(首次需创建管理员账户)
六、数据库初始化
-
执行迁移命令
docker exec -it dify-api flask db upgrade # 初始化数据库表结构
-
手动创建数据库(若未自动完成)
CREATE DATABASE dify; # 在PostgreSQL中执行
七、常见问题与解决方案
- 容器启动失败
- 日志查看:
docker logs <容器名>
检查错误详情 - 资源不足:调整Docker内存至≥8 GiB(Mac/Win在Docker Desktop设置中修改)
- 端口冲突
- 修改
.env
中的NGINX_HTTP_PORT
(如改为8080),重启服务
- 数据库连接错误
- 确认
POSTGRES_PASSWORD
与REDIS_PASSWORD
在.env
中正确 - 检查PostgreSQL是否允许远程连接(修改
pg_hba.conf
)
- 模型API调用失败
- 检查API密钥是否有效,网络是否可访问OpenAI等外部服务
八、扩展配置(可选)
- 多模型支持
- 在Web界面
设置 → 模型供应商
中添加Claude、DeepSeek等模型
- 自定义插件
- 开发插件后,配置
PLUGIN_DIR
环境变量指向插件目录
- 高可用部署
-
使用Kubernetes部署,参考命令:
kubectl apply -f dify-helm-chart/ # 使用官方Helm Chart
九、维护与升级
-
数据备份
docker exec -t dify-db pg_dump -U postgres dify > dify_backup.sql # 备份数据库
-
版本升级
git pull origin main # 拉取最新代码
docker compose build --no-cache # 重建镜像
docker compose up -d # 重启服务
通过以上步骤,可完成Dify的本地化部署并适配企业级需求。建议部署后参考官方文档进行应用开发与运维优化。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!