上篇主要写了基于全卷积网络跟踪器算法——FCNT跟踪算法,今天这篇主要写写MDNet目标跟踪算法。
1.什么是MDNet目标跟踪算法
介绍该算法之前,必须强调一点:MDNet是2015年VOT的冠军。从侧面可以看出该算法的优点了!英文名Multi-Doamin Network,即多域学习的网络结构。通过多域学习这种特性,来学习这些目标的共性。
2.MDNet目标跟踪算法原理
MDNet目标跟踪算法主要包括以下步骤:
(1)先输入为107x107的Bounding box,
(2)再经过5个隐藏层,即3个卷积层conv1-conv3和2个全连接层fc4、fc5,
(3) 接下来利用两个全连接层fc4,fc5各有512个输出单元,来设计有ReLUs和Dropouts
(4)最后利用fc6是一个二分类层,一共有K个,对应K个不同的视频,每次训练的时候只有对应该视频的fc6被使用,前面的层都是共享的。
其算法框架可以表示为:
3.MDNet目标跟踪算法优缺点
优点:该算法对尺度变化的视频相对鲁棒性较好,使用的策略,使得结果更加精确。
缺点:在线的微调fine-tune,会使得速度慢一些,需要花时间和精力去微调。