无人驾驶感知篇之目标跟踪(十六)

        上篇主要写了基于全卷积网络跟踪器算法——FCNT跟踪算法,今天这篇主要写写MDNet目标跟踪算法。

1.什么是MDNet目标跟踪算法

        介绍该算法之前,必须强调一点:MDNet是2015年VOT的冠军。从侧面可以看出该算法的优点了!英文名Multi-Doamin Network,即多域学习的网络结构。通过多域学习这种特性,来学习这些目标的共性。

2.MDNet目标跟踪算法原理

MDNet目标跟踪算法主要包括以下步骤:

(1)先输入为107x107的Bounding box,

(2)再经过5个隐藏层,即3个卷积层conv1-conv3和2个全连接层fc4、fc5,

(3) 接下来利用两个全连接层fc4,fc5各有512个输出单元,来设计有ReLUs和Dropouts

(4)最后利用fc6是一个二分类层,一共有K个,对应K个不同的视频,每次训练的时候只有对应该视频的fc6被使用,前面的层都是共享的。

其算法框架可以表示为:

3.MDNet目标跟踪算法优缺点

      优点:该算法对尺度变化的视频相对鲁棒性较好,使用的策略,使得结果更加精确。

      缺点:在线的微调fine-tune,会使得速度慢一些,需要花时间和精力去微调。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值