Halcon区域形状特征-area_center、area_holes、select_shape、inner_circle和smallest_rectangle2算子

提示:文章参考了网络上其他作者的文章,以及相关书籍,如有侵权,请联系作者。


前言

       在场景中选择物体的特征是图像测量或者识别的重要基础。区域的形状特征是非常常用的特征,在模式匹配中,常使用形状特征作为匹配的依据。下面就介绍几种常用的与区域形状特征相关的算子。


一、区域的面积和中心(area_center)

       提到区域的特征,最常用的莫过于区域的面积和中心点坐标信息。实际工作中,经常会使用面积或中心点进行特征的选择和定位。Halcon中的area_center算子就是用于实现这一功能的,该算子一次返回以下两个结果。
       1)、面积:指的是单个区域(输入区域可能不止一个)中包含的灰度像素数量。
       2)、中心:指的是几何中心点坐标,即单个区域的中心点行坐标均值和列坐标均值。
       以一个例子说明,下面左图为输入的图像;中图为阈值分割后的图像,其中较亮部分为提取的区域,这些区域将作为area_center 算子的输入;右图为求面积与形状中心坐标的结果。其中文字标注的是对应区域的面积,文字的位置为中心位置设置行方向偏移后的位置。
在这里插入图片描述
       上面右图中第三个孔的中心坐标在控制变量窗口中可以看到,把鼠标放在圆孔的中心,可以从界面右下角的鼠标位置看到鼠标坐标值与控制变量中的值一致。
在这里插入图片描述
       上述过程的代码如下:

dev close window ()
*读取图片
read_image(Image, ' data/holes')
*设置窗口属性,为了获取窗口句柄,供后面显示文字用
get image_size (Image, Width, Height)
*创建新窗口
dev_open_window (0, 0, width, Height, 'black', windowID)
*将图像转化为单通道灰度图
rgb1_to_gray (Image, GrayImage)
*创建矩形选区,选择感兴趣区域
gen_rectangle1 (Rectangle, 180, 83, 371,522)
reduce_domain (GrayImage, Rectangle,ROI)
*阈值处理,提取图中深色部分,即文字部分。这里阈值设置为50,基本可以提取出所有黑色文字threshold ( ROI, Region, 0, 80)
*gen_image_proto (ImageReduced, ImageCleared, 0)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值