(1)深度学习模型的建立与大气湍流模拟 研究的第一步是构建基于深度学习的无波前探测自适应光学技术模型。这涉及到对大气湍流的数值模拟,以模拟不同强度下的大气湍流对光束传播的影响。研究者们选择了基于Kolmogorov湍流理论的方法来模拟大气湍流,这种方法能够更精确地模拟实际物理成像过程中的光学系统模型。通过这种方式,研究者们能够生成大量的数据集,这些数据集包含了焦面退化图像及其对应的湍流像差信息,为后续的深度学习模型训练提供了基础。
(2)深度学习网络结构与训练算法的研究 在建立了数据集之后,研究者们进一步搭建了不同的深度学习神经网络,包括卷积神经网络(CNN)、残差网络(ResNet)系列、以及EfficientNet-B0网络等。这些网络的输入是焦面退化图像,而输出是对应的大气湍流像差。研究者们以像差检测精度、探测范围及解算速度为目标,研究了不同的深度神经网络结构和特定的网络训练算法。通过这些研究,实现了目标退化图像和湍流像差系数之间
网络映射模型的精确建立。此外,研究者们还利用模拟的自适应光学系统产生了大量的焦面退化图像,对构建的多个深度神经网络进行了测试,验证了算法的求解精度、探测范围及解算速度,并与基于SPGD算法的自适应光学技术进行了对比。
(3)深度学习模型在实际应用中的验证 研究者们还研究了基于解算波前像差对退化图像的解卷积策略。利用EfficientNet-B0网络模型预测出的波前像差,研究者们求解了成像系统的点扩散函数,并在此基础上通过维纳滤波的方式进行了观测目标退化图像的复原计算。这种方法能够获得无波前探测自适应光学系统观测目标的高分辨率成像,从而验证了深度学习模型在实际应用中的有效性。
% XTrain, YTrain, XTest, YTest
%