(1)基于多尺度特征融合网络的二分类桥梁缺陷检测模型
在桥梁缺陷检测中,图像数据集不平衡是一个常见问题,特别是正常桥面图像数量远多于缺陷图像。这种不平衡不仅影响模型的训练效果,还可能导致模型对缺陷图像的识别能力下降。为了缓解这一问题,本文提出了一种基于多尺度特征融合网络的二分类桥梁缺陷检测模型。
首先,该模型利用Swin Transformer网络和预训练网络对桥梁图像进行特征提取。Swin Transformer通过自注意力机制,捕捉图像中的局部特征,而预训练网络则能够提取全局特征。这种结合使得模型能够在不同的尺度上理解图像内容,从而提高检测精度。
在特征提取的基础上,我们设计了一种双通道多尺度特征融合模块。该模块将全局特征和局部特征进行融合,并聚合桥梁缺陷形态和细节的上下文信息。通过这种方式,模型能够更准确地识别出桥梁图像中的缺陷特征,从而将其划分为正常类或缺陷类。
具体来说,多尺度特征融合模块通过卷积神经网络(CNN)的不同层提取不同尺度的特征图。这些特征图通过上采样或下采样操作调整到同一尺寸,并进行拼接。然后,利用注意力机制对拼接后的特征图进行加权,突出重要特征,抑制不相关特征。最后,通过全连接层对加权后的特征进行分类,得到最终的二分类结果。
在训练过程中,我们采用数据增强技术,如旋转、翻转、裁剪等,来增加缺陷图像的多样性,缓解数据集不平衡问题。同时,我们引入焦点损失函数(Focal Loss),使得模型更加关注难分类的样本,提高模型的泛化能力。
通过大量实验验证,该二分类模型在桥梁缺陷检测中取得了良好的性能,特别是在处理小目标缺陷时,能够显著提高模型的定位与检测精度。
(2)基于注意力的特征分离多分类桥梁缺陷检测模型
在二分类的基础上,为了进一步细分桥梁缺陷类型,本文提出了一种基于注意力的特征分离多分类桥梁缺陷检测模型。该模型利用CoT(Cross-Attention Transformer)注意力机制改进主干网络ResNet,并在ImageNet数据集上进行预训练,提取潜在桥梁缺陷类图片的深度注意力特征图。
CoT注意力机制通过计算不同特征之间的相关性,捕捉图像中的关键信息。在ResNet中引入CoT注意力机制后,模型能够更好地识别小目标缺陷,提高特征提取的精度。
在特征提取的基础上,我们设计了一种特征分离模块。该模块利用卷积神经网络的不同层提取不同尺度的特征图,并通过注意力机制对特征图进行加权。然后,利用通道分离操作将加权后的特征图分离为等大小的蜂窝麻面类、裂缝类、破损露筋类、渗水类、修补类特征图。
具体来说,特征分离模块首先通过1x1卷积对特征图进行降维,减少计算量。然后,利用注意力机制计算不同通道之间的相关性,并生成注意力权重。接着,将注意力权重与原始特征图进行相乘,得到加权后的特征图。最后,通过通道分离操作将加权后的特征图分离为不同类别的特征图。
在训练过程中,我们采用交叉熵损失函数(Cross-Entropy Loss)来优化多分类模型。同时,为了进一步提高模型的泛化能力,我们引入早停法(Early Stopping)和模型集成(Model Ensemble)技术。早停法能够在模型过拟合之前停止训练,而模型集成则能够结合多个模型的预测结果,提高最终预测的精度。
实验结果表明,该多分类模型在桥梁缺陷检测中取得了优异的性能,特别是在处理复杂场景和小目标缺陷时,能够准确识别出不同类型的缺陷。
(3)桥梁缺陷检测系统的设计与实现
基于上述两种深度学习网络模型,本文搭建了一套集成二分类和多分类的桥梁缺陷检测系统。该系统利用自主设计的桥梁图像数据采集云台,实地采集桥梁缺陷图像数据集,并分别用于训练模型二分类和多分类网络模型。
在系统设计方面,我们采用模块化设计思想,将系统分为数据采集模块、图像处理模块、模型训练模块、检测识别模块和结果展示模块。数据采集模块利用云台实时采集桥梁图像数据,并进行预处理和标注。图像处理模块对采集到的图像进行裁剪、缩放等操作,以满足模型输入的要求。模型训练模块利用处理后的图像数据集训练二分类和多分类网络模型。检测识别模块利用训练好的模型对待测桥梁图像进行二分类和多分类检测,并输出检测结果。结果展示模块将检测结果以图像和文本的形式展示给用户。
% 加载数据集
dataDir = 'path_to_dataset'; % 数据集路径
imageDir = fullfile(dataDir, 'images'); % 图像路径
labelDir = fullfile(dataDir, 'labels'); % 标签路径
% 读取图像和标签
imageFiles = dir(fullfile(imageDir, '*.jpg')); % 假设图像格式为jpg
labels = cell(length(imageFiles), 1);
for i = 1:length(imageFiles)
imageName = imageFiles(i).name;
labelName = strrep(imageName, '.jpg', '.txt'); % 假设标签文件与图像文件同名,但扩展名为txt
labelFile = fullfile(labelDir, labelName);
if exist(labelFile, 'file')
labels{i} = readmatrix(labelFile); % 读取标签文件,假设标签为矩阵形式
else
labels{i} = []; % 如果没有标签文件,则标记为空
end
end
% 数据预处理
imageDatastore = imageDatastore(imageDir, ...
'IncludeSubfolders', false, ...
'LabelSource', 'none'); % 创建图像数据存储区,但不包含标签信息
% 定义数据增强
augimdsTrain = augmentedImageDatastore(inputSize, imageDatastore, ...
'DataAugmentation', 'randcrop', ... % 随机裁剪
'RandomHorizontalFlip', true, ... % 随机水平翻转
'RandomVerticalFlip', false); % 不进行随机垂直翻转
% 搭建深度学习模型(以ResNet为例)
layers = resnet50; % 使用预训练的ResNet50模型
layers(end-3).Name = 'fc'; % 更改最后一层全连接层的名称
layers(end-3).Weights = []; % 清空权重,以便重新训练
layers(end-3).Bias = [];
layers(end-2) = fullyConnectedLayer(numClasses, 'WeightLearnRateFactor', 10, 'BiasLearnRateFactor', 10); % 添加新的全连接层
layers(end) = softmaxLayer; % 添加softmax层
layers(end+1) = classificationLayer; % 添加分类层
% 训练模型
options = trainingOptions('sgdm', ...
'MaxEpochs', 20, ... % 最大训练轮数
'MiniBatchSize', 32, ... % 批量大小
'Plots', 'training-progress', ... % 显示训练进度
'Verbose', false, ... % 不显示详细信息
'InitialLearnRate', 1e-4, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 分段学习率调整
'LearnRateDropPeriod', 10, ... % 每10个epoch降低一次学习率
'LearnRateDropFactor', 0.1, ... % 学习率降低因子
'Shuffle', 'every-epoch', ... % 每个epoch打乱数据
'ValidationData', valImds, ... % 验证数据集
'ValidationFrequency', 30, ... % 每30步验证一次
'Verbose', false, ...
'Plots', 'training-progress'); % 显示训练进度图
% 假设训练数据和验证数据已经加载到trainImds和valImds中
net = trainNetwork(trainImds, layers, options); % 训练网络
% 使用训练好的模型进行预测
predImds = augmentedImageDatastore(inputSize, imageDatastore, 'None'); % 不进行数据增强
[YPred, scores] = classify(net, predImds); % 对验证集进行分类预测
% 展示预测结果
figure;
for i = 1:min(10, numel(YPred)) % 仅展示前10个预测结果
subplot(2, 5, i);
imshow(readimage(imageDatastore, i)); % 显示原始图像
title(char(string(categories(YPred(i))))); % 显示预测标签
end