重点分析了相机的成像原理和畸变产生原因,采用张正友标定法完成了相机的标定工作,获得了相机的参数矩阵和畸变系数。随后,构建了复杂情形下的零件数据集,为后续算法的训练和测试提供了基础。
深度学习目标检测算法对比
本文对比了Faster-RCNN、SSD、YOLOv4和YOLOv5等四种主流深度学习目标检测算法在零件数据集上的性能指标。通过分析网络结构、原理和损失函数,最终选择了综合性能表现最优的YOLOv5作为后续优化改进的基础网络模型。
YOLOv5零件检测算法优化
为了提高YOLOv5网络模型的检测精度,本文提出了一种优化改进的YOLOv5零件检测算法。具体改进措施包括:将颈部网络的特征融合结构替换为双向加权特征金字塔网络Bi FPN,以提升不同尺度零件的检测精度;在主干网络中添加高效注意力机制模块ECA-Net,增强模型对零件特征的关注度;改用EIoU边界框回归损失函数,提高零件的定位精度。试验结果表明,相较于原始YOLOv5,改进算法的mAP@0.5提升了3.3%,验证了优化策略的有效性。
零件智能检测系统设计
本文还设计了零件智能检测系统,包括机器视觉系统中的光源选型、相机选型和镜头选型,以及检测系统界面的开发和设计。该系统可实现零件图像的采集、检测结果可视化和数据保存等功能,为实际生产应用提供了有力支持。
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
import cv2
# 加载预训练的深度学习模型(这里假设已经训练好并保存为'part_detection_model.h5')
model = load_model('part_detection_model.h5')
# 定义图像预处理函数
def preprocess_image(img_path):
img = image.load_img(img_path, target_size=(224, 224)) # 假设模型输入尺寸为224x224
img_array = image.img_to_array(img) / 255.0 # 归一化
img_array = np.expand_dims(img_array, axis=0) # 增加批次维度
return img_array
# 定义检测函数
def detect_parts(img_path):
img_array = preprocess_image(img_path)
preds = model.predict(img_array) # 进行预测
# 假设模型输出为边界框和类别概率(这里需要根据实际模型输出格式进行调整)
boxes, scores, classes = process_predictions(preds) # 这是一个假设的函数,需要实现
# 在图像上绘制检测结果
img = cv2.imread(img_path)
for box, score, cls in zip(boxes, scores, classes):
if score > 0.5: # 假设阈值为0.5
x, y, w, h = box
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(img, f'{cls}: {score:.2f}', (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2)
# 显示或保存处理后的图像
cv2.imshow('Detected Parts', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 假设的函数,用于处理模型预测输出(需要根据实际模型进行调整)
def process_predictions(preds):
# 这里应该包含将模型输出转换为边界框、类别和分数的逻辑
# 但由于篇幅限制,这里仅作为占位符
boxes = [] # 边界框列表
scores = [] # 分数列表
classes = [] # 类别列表
return boxes, scores, classes
# 使用示例
detect_parts('path_to_image.jpg')