(1)深度学习在口袋公园设计中的应用 传统的口袋公园设计过程中,设计师需要全程参与,从分析到创作再到表达,计算机仅作为辅助工具。本研究旨在通过深度学习技术,让机器自主学习口袋公园的设计布局经验,实现自动化设计。这不仅能够节省设计时间和成本,还能为设计师提供更多的设计思路和灵感。研究首先通过梳理人工智能技术在园林布局生成领域的研究和文献,建立了实验的理论基础。接着,通过对口袋公园案例的分析和传统设计方法的研究,探讨了口袋公园的设计要素和空间组织模式,为深度学习技术的应用提供了理论和数据基础。
(2)数据增强策略的提出与实验 在园林设计中,样本量通常较小,这对深度学习模型的训练构成了挑战。为了解决这一问题,本研究提出了基于拓扑学的数据增强策略,有效提高了样本的多样性。通过详细的实验记录和不断的实验结果优化,机器能够更好地学习到样本的内在规律和表示层次。实验结果表明,机器能够以现有原始场地信息和周边环境等约束条件为基础,在短时间内生成合理的园林布局规划图。
(3)深度学习模型的精度和可靠性的提升 随着深度学习技术的飞速发展,风景园林设计领域迎来了新的机遇。未来的研究可以进一步提高模型的精度和可靠性,将其应用到更广泛的场景中,探索更多元化和创新性的设计思路。在此过程中,人机协同的重要性不言而喻。通过将人的创造性思维与机器的计算能力相结合,可以实现个性化设计,提高设计的适用性和用户体验。
% 定义深度学习模型架构
layers = [
imageInputLayer([1 224 224])
convolution2dLayer(3, 64, 'Padding', 'same')
batchNormalizationL