机器学习算法在信用风险预测模型中的应用毕业论文【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)互联网消费金融与信用风险预测背景

  • 互联网消费金融特点:互联网消费金融为满足个人消费需求提供小额贷款分期服务,相比传统消费金融,具有服务便捷、降成本、覆盖广等优势,随经济发展和消费观念升级被更多消费者认可。但面对大量申请借款用户,信用风险预测成为关键问题,需借助互联网和计算机技术解决。
  • 机器学习在信用风险预测中的应用:探讨机器学习技术在该领域的发展与实际应用情况。研究违约用户和履约用户的各方面特征,为建立有效预测模型提供基础。
  • 相关模型与评价指标介绍:介绍信用风险评估中流行的 Logistic 回归模型和 GBDT(梯度迭代决策树)模型。Logistic 回归模型通过建立线性关系将输入特征映射到概率空间,用于判断用户违约概率;GBDT 模型则是通过不断迭代构建多棵决策树来进行预测,具有较强的非线性拟合能力。同时阐述主流的模型性能评价指标,如 AUC(Area Under the Curve)值,AUC 值越接近 1,表明模型的分类性能越好,能有效衡量模型在不同阈值下对正例和负例的区分能力。

(2)基于机器学习的信用风险预测模型构建

  • 数据准备与预处理
    • 数据来源:以某互联网金融公司数据样本为例,该数据集包含用户的多维度信息,如个人基本信息(年龄、性别、职业等)、财务信息(收入、负债等)、消费行为信息(消费频率、消费金额等)、信用记录信息等。
    • 变量特征筛选:使用 Information Value 统计量筛选变量特征。Information Value 可衡量变量对目标变量(是否违约)的预测能力,值越大表明该变量与违约的相关性越强。通过设定阈值,保留 Information Value 较高的变量,去除相关性弱的变量,以降低数据维度和提高模型效率。例如,对于年龄变量,若发现某个年龄段的用户违约率明显高于其他年龄段,其 Information Value 较大,则保留该变量用于后续建模。
    • 变量编码:采取 woe(weight of evidence)编码方式对筛选后的变量特征进行重新编码。woe 编码通过计算每个变量取值的 “证据权重”,将原始变量值转换为更能反映其与违约概率关系的数值。这样可以提升变量对违约用户和履约用户的辨别能力,使模型更好地学习数据中的规律。例如,对于收入水平变量,将不同收入区间进行 woe 编码后,模型能更清晰地理解收入与违约风险之间的非线性关系。
  • 模型构建与训练
    • Logistic 回归模型构建:设定模型的目标函数为对数似然函数,通过最大似然估计方法求解模型参数。将预处理后的数据集划分为训练集和测试集,使用训练集数据对 Logistic 回归模型进行训练。在训练过程中,不断调整模型的参数,如正则化参数(用于防止过拟合),以提高模型的拟合能力和泛化能力。例如,通过交叉验证等技术选择合适的正则化参数值,使模型在训练集上既能较好地拟合数据,又能在测试集上保持较好的性能。
    • GBDT 模型构建:首先确定 GBDT 模型的基本参数,如树的数量、树的深度、学习率等。然后,使用训练集数据逐步构建决策树。在每一轮迭代中,根据前一轮模型的预测结果与实际值之间的残差,构建一棵新的决策树来拟合残差,不断减小预测误差。通过不断调整模型参数,使模型在训练集上的误差逐渐减小,并在测试集上具有较好的泛化性能。例如,通过调整树的深度和学习率,控制模型的复杂度和学习速度,避免过拟合或欠拟合。
  • 模型评估与优化
    • 使用 AUC 值评估模型性能:利用测试集数据,计算 Logistic 回归模型和 GBDT 模型的 AUC 值。通过比较两个模型的 AUC 值,评估它们在信用风险预测中的性能优劣。如果 AUC 值较低,说明模型对违约用户和履约用户的区分能力较差,需要进一步优化模型。
    • 模型优化策略:针对 AUC 值不理想的情况,采取多种优化措施。对于 Logistic 回归模型,可以进一步调整特征选择方法、尝试不同的正则化方式或增加交互项等。对于 GBDT 模型,可以调整树的结构(如增加树的数量、减小树的深度)、优化学习率、采用不同的采样策略等。通过不断尝试这些优化策略,并重新计算 AUC 值,直到模型性能达到满意的程度。例如,发现 GBDT 模型过拟合时,可减小树的深度或增加随机采样比例,以提高模型的泛化能力,从而提升 AUC 值。

(3)信用风险预测模型的应用与展望

  • 模型应用效果分析:通过对某互联网金融公司数据样本的实际应用,分析模型在预测用户信用风险方面的效果。例如,统计模型预测的违约用户中实际违约的比例,以及预测的履约用户中实际履约的比例,评估模型的准确性和可靠性。同时,分析模型在不同用户群体(如不同年龄、收入水平、消费行为等)中的表现差异,为公司制定个性化的风险管理策略提供依据。
  • 信用风险模型发展展望:随着互联网金融的不断发展和数据量的持续增长,信用风险预测模型将面临更多的挑战和机遇。一方面,需要不断探索更先进的机器学习算法和技术,如深度学习中的神经网络等,以提高模型的预测精度和泛化能力。另一方面,要加强对数据质量和安全性的管理,确保模型输入数据的准确性和可靠性。同时,还应注重模型的可解释性,以便金融公司能够理解模型的决策过程,更好地进行风险管理和决策制定。此外,跨领域的合作将成为趋势,如结合金融领域知识与计算机科学、统计学等领域的技术,共同推动信用风险预测模型的发展和应用。

序号年龄性别(0 女,1 男)职业(1 白领,2 蓝领,3 个体,4 其他)收入(万元)负债(万元)消费频率(月均次数)信用记录(0 良好,1 不良)是否违约(0 未违约,1 违约)
13011821000
2250251811
335131031200
4400462601
5281171910
% 划分训练集和测试集(假设 70%为训练集,30%为测试集)
trainRatio = 0.7;
numSamples = size(data, 1);
trainIndices = randperm(numSamples, round(trainRatio * numSamples));
testIndices = setdiff(1:numSamples, trainIndices);

trainData = data(trainIndices, :);
testData = data(testIndices, :);

% Logistic 回归模型训练
logisticModel = fitglm(trainData(:, 1:end - 1), trainData(:, end), 'binomial');

% GBDT 模型训练(假设使用 TreeBagger 函数进行简单示例,实际可使用更完善的工具包)
numTrees = 100; % 树的数量
gbdtModel = TreeBagger(numTrees, trainData(:, 1:end - 1), trainData(:, end));

% 在测试集上进行预测
logisticPredictions = predict(logisticModel, testData(:, 1:end - 1));
gbdtPredictions = predict(gbdtModel, testData(:, 1:end - 1));

% 计算 AUC 值(使用 perfcurve 函数)
[logisticAUC, ~, ~] = perfcurve(testData(:, end), logisticPredictions, 1);
[gbdtAUC, ~, ~] = perfcurve(testData(:, end), gbdtPredictions, 1);

disp(['Logistic 回归模型 AUC 值:', num2str(logisticAUC)]);
disp(['GBDT 模型 AUC 值:', num2str(gbdtAUC)]);

% 模型优化示例(以 Logistic 回归模型为例,调整正则化参数)
regularizationParams = [0.01, 0.1, 1, 10]; % 不同的正则化参数值
bestAUC = 0;
bestModel = [];
for i = 1:length(regularizationParams)
    currentModel = fitglm(trainData(:, 1:end - 1), trainData(:, end), 'binomial', 'Regularization', 'Lasso', 'Lambda', regularizationParams(i));
    currentPredictions = predict(currentModel, testData(:, 1:end - 1));
    [currentAUC, ~, ~] = perfcurve(testData(:, end), currentPredictions, 1);
    if currentAUC > bestAUC
        bestAUC = currentAUC;
        bestModel = currentModel;
    end
end
disp(['优化后的 Logistic 回归模型 AUC 值:', num2str(bestAUC)]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值