基于隐马尔可夫链和LSTM的金融智能迁移学习研究【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)金融市场效率与机器学习模型的应用

随着我国经济的快速发展,金融市场在其中扮演的角色愈发重要。金融市场的效率直接关系到其服务实体经济的能力,市场定价的准确性对于实体经济的有效服务至关重要。尽管有效市场假说认为在一个充分竞争的市场中,市场走势无法被预测,但市场微观结构的研究表明,在长周期有效的市场中,短周期内仍可能存在无效性。这种无效性为机器学习模型的应用提供了空间。本文采用随机游动检验(Random Walk Test)对我国股票市场和期货市场进行无效性检验,发现两个市场在分钟频率上的无效程度较高,且这种无效性并未随时间推移而减弱,为量化分析提供了基础

(2)机器学习模型构建与量化分析

在完成市场无效性检验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值