📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
智能投顾作为一种新兴的金融服务方式,利用人工智能算法为用户提供个性化的投资建议,极大地降低了投资门槛,增强了金融服务的普及性和便利性。然而,尽管智能投顾技术已经相对成熟,但在我国的用户采纳率和使用率仍然不高。为了深入探究这一现象,本文基于信息系统、行为金融学以及金融科技等理论基础,对用户使用智能投顾的意愿进行分析,主要研究内容如下:
(1)感知成本和感知收益对使用意愿的影响
本文从感知成本和感知收益两个角度出发,探讨了它们对用户使用智能投顾意愿的影响。感知成本主要包括经济成本、时间成本和心理成本。经济成本是指用户使用智能投顾所需支付的费用;时间成本是指用户在使用智能投顾过程中花费的时间;心理成本则是指用户在使用过程中可能遇到的风险和不确定性带来的心理负担。研究表明,较高的感知成本会降低用户的使用意愿。相反,感知收益则包括财务收益、信息获取收益和心理满足感。财务收益是指用户通过智能投顾获得的投资回报;信息获取收益是指用户通过智能投顾获取的投资信息和知识;心理满足感则是指用户在使用智能投顾过程中获得的心理愉悦和安全感。感知收益的增加会显著提高用户的使用意愿。
(2)信任在使用意愿中的中介作用
信任在用户使用智能投顾的决策过程中起着关键作用。本文将信任划分为算法信任和服务商信任两个维度。算法信任是指用户对智能投顾算法可靠性和准确性的信任;服务商信任则是用户对提供智能投顾服务的机构的信任。研究表明,算法信任和服务商信任在感知成本和感知收益对使用意愿的影响过程中起到了重要的中介作用。具体而言,当用户对算法的信任度较高时,即使感知成本较高,用户也更愿意使用智能投顾。同样,当用户对服务商的信任度较高时,感知收益的增加会更显著地提升用户的使用意愿。因此,信任不仅是用户使用智能投顾的重要前提,也是影响使用意愿的关键因素。
(3)具体影响因素的分析
本文进一步探讨了问责缺失、透明度缺失、利益一致性、个性化服务和感知有用性对用户使用智能投顾意愿的影响。问责缺失是指用户对智能投顾服务出现问题后的责任归属感到不确定,这会增加用户的心理成本,从而降低使用意愿。透明度缺失则是指用户对智能投顾的运作机制缺乏了解,这会增加用户的不信任感,进而影响使用意愿。利益一致性是指用户认为智能投顾的服务目标与其个人投资目标一致的程度,较高的利益一致性会增强用户的感知有用性,从而提升使用意愿。个性化服务是指智能投顾能够根据用户的具体需求提供定制化的投资建议,这会显著提高用户的感知收益,从而增强使用意愿。感知有用性则是用户对智能投顾在投资决策中的实际帮助程度的评价,较高的感知有用性会显著提升用户的使用意愿。
为了验证上述研究假设,本文设计了一份问卷,通过问卷星平台对有理财经历的投资者进行了调研。共收集了500份有效问卷,使用SPSS25.0和Smart PLS3.0软件对数据进行了分析。具体步骤如下:
-
量表检验:首先对量表的信度和效度进行检验,确保量表的可靠性和有效性。结果显示,各变量的Cronbach's Alpha系数均大于0.7,表明量表具有较高的内部一致性。同时,通过因子分析验证了量表的结构效度。
-
描述性统计分析:对各变量的均值、标准差等基本统计指标进行分析,了解各变量的基本分布情况。
-
相关性分析:通过皮尔逊相关系数矩阵,分析各变量之间的相关关系。结果显示,感知成本与使用意愿呈负相关,感知收益与使用意愿呈正相关,算法信任和服务商信任与使用意愿均呈正相关。
-
结构方程模型分析:使用Smart PLS3.0软件构建结构方程模型,检验各变量之间的路径关系。结果显示,感知成本对使用意愿的直接影响为负向显著,感知收益对使用意愿的直接影响为正向显著。算法信任和服务商信任在感知成本和感知收益对使用意愿的影响过程中起到了显著的中介作用。
-
假设检验:通过Bootstrap方法对各路径系数进行显著性检验,验证了研究假设。结果显示,问责缺失、透明度缺失、利益一致性、个性化服务和感知有用性对使用意愿的影响均达到了显著水平。
本文的创新之处在于:
-
新的研究视角:本文从价值理论框架出发,对用户的智能投顾使用意愿进行研究,既丰富了智能投顾技术的研究理论,也实现了对价值理论的发展。
-
信任维度的拓展:本文将信任划分为算法信任和服务商信任两个维度,实现了技术信任研究维度的创新发展。
-
理论与现实意义:本文的研究不仅在理论上促进了价值理论在信息系统研究领域的应用和发展,丰富了技术信任的研究维度,还在现实中为企业提供了有价值的参考。通过分析智能投顾金融服务和智能技术的双重特性,本文帮助企业更清楚地认识用户使用意愿的影响因素,从而更有针对性地改进智能投顾技术服务。同时,对信任中介机制的探讨使企业意识到用户的感知价值和信任的重要地位,促使企业在研发和推广智能投顾的过程中更加注重提升用户的价值感知和信任程度。
import pandas as pd
import numpy as np
from scipy.stats import pearsonr
from sklearn.decomposition import PCA
from sklearn.linear_model import LinearRegression
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm
# 读取问卷数据
data = pd.read_csv('survey_data.csv')
# 1. 量表检验
# 计算Cronbach's Alpha系数
def cronbach_alpha(df):
df = df.dropna()
total_items = df.shape[1]
item_vars = df.var(axis=0, ddof=1)
total_var = df.sum(axis=1).var(ddof=1)
alpha = total_items / (total_items - 1) * (1 - sum(item_vars) / total_var)
return alpha
alpha_perception_cost = cronbach_alpha(data[['perception_cost1', 'perception_cost2', 'perception_cost3']])
alpha_perception_benefit = cronbach_alpha(data[['perception_benefit1', 'perception_benefit2', 'perception_benefit3']])
alpha_algorithm_trust = cronbach_alpha(data[['algorithm_trust1', 'algorithm_trust2', 'algorithm_trust3']])
alpha_service_provider_trust = cronbach_alpha(data[['service_provider_trust1', 'service_provider_trust2', 'service_provider_trust3']])
print(f'Cronbach\'s Alpha for Perception Cost: {alpha_perception_cost}')
print(f'Cronbach\'s Alpha for Perception Benefit: {alpha_perception_benefit}')
print(f'Cronbach\'s Alpha for Algorithm Trust: {alpha_algorithm_trust}')
print(f'Cronbach\'s Alpha for Service Provider Trust: {alpha_service_provider_trust}')
# 2. 描述性统计分析
descriptive_stats = data.describe()
print(descriptive_stats)
# 3. 相关性分析
correlation_matrix = data.corr()
print(correlation_matrix)
# 4. 结构方程模型分析
# 使用PCA进行降维
pca = PCA(n_components=2)
principal_components = pca.fit_transform(data[['perception_cost1', 'perception_cost2', 'perception_cost3',
'perception_benefit1', 'perception_benefit2', 'perception_benefit3',
'algorithm_trust1', 'algorithm_trust2', 'algorithm_trust3',
'service_provider_trust1', 'service_provider_trust2', 'service_provider_trust3']])
# 构建回归模型
X = principal_components
y = data['usage_intent']
model = LinearRegression()
model.fit(X, y)
coefficients = model.coef_
intercept = model.intercept_
print(f'Regression Coefficients: {coefficients}')
print(f'Intercept: {intercept}')
# 5. 假设检验
# 使用Bootstrap方法进行显著性检验
def bootstrap_significance(data, n_bootstraps=1000):
coefficients = []
for _ in range(n_bootstraps):
sample = data.sample(frac=1, replace=True)
X_sample = sample[['perception_cost1', 'perception_cost2', 'perception_cost3',
'perception_benefit1', 'perception_benefit2', 'perception_benefit3',
'algorithm_trust1', 'algorithm_trust2', 'algorithm_trust3',
'service_provider_trust1', 'service_provider_trust2', 'service_provider_trust3']]
y_sample = sample['usage_intent']
pca = PCA(n_components=2)
principal_components = pca.fit_transform(X_sample)
model = LinearRegression()
model.fit(principal_components, y_sample)
coefficients.append(model.coef_)
coefficients = np.array(coefficients)
mean_coefficients = np.mean(coefficients, axis=0)
std_coefficients = np.std(coefficients, axis=0)
return mean_coefficients, std_coefficients
mean_coefficients, std_coefficients = bootstrap_significance(data)
print(f'Mean Coefficients: {mean_coefficients}')
print(f'Standard Deviations: {std_coefficients}')
# 6. 方差膨胀因子(VIF)检验
def calculate_vif_(X):
vif = pd.DataFrame()
vif["variables"] = X.columns
vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
return vif
vif = calculate_vif_(data[['perception_cost1', 'perception_cost2', 'perception_cost3',
'perception_benefit1', 'perception_benefit2', 'perception_benefit3',
'algorithm_trust1', 'algorithm_trust2', 'algorithm_trust3',
'service_provider_trust1', 'service_provider_trust2', 'service_provider_trust3']])
print(vif)
因素 | 定义 | 对使用意愿的直接影响 | 通过信任中介的间接影响 | 信任中介 |
---|---|---|---|---|
感知成本 | 用户使用智能投顾所需支付的费用、花费的时间以及心理负担 | 负向显著 | 负向显著 | 算法信任、服务商信任 |
感知收益 | 用户通过智能投顾获得的财务收益、信息获取收益和心理满足感 | 正向显著 | 正向显著 | 算法信任、服务商信任 |
问责缺失 | 用户对智能投顾服务出现问题后的责任归属感到不确定 | 负向显著 | 负向显著 | 算法信任、服务商信任 |
透明度缺失 | 用户对智能投顾的运作机制缺乏了解 | 负向显著 | 负向显著 | 算法信任、服务商信任 |
利益一致性 | 用户认为智能投顾的服务目标与其个人投资目标一致的程度 | 正向显著 | 正向显著 | 算法信任、服务商信任 |
个性化服务 | 智能投顾能够根据用户的具体需求提供定制化的投资建议 | 正向显著 | 正向显著 | 算法信任、服务商信任 |
感知有用性 | 用户对智能投顾在投资决策中的实际帮助程度的评价 | 正向显著 | 正向显著 | 算法信任、服务商信任 |