基于推荐系统的金融产品时序因素与冷启动问题研究【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1) 深度学习与金融产品推荐背景。随着科技与金融行业的高速发展,基于互联网的金融产品种类呈现爆发式增长。面对如此海量的信息,用户需要花费大量时间和精力寻找适合自己需求的金融产品,而传统的搜索方式往往难以满足个性化需求。因此,金融产品推荐系统应运而生,通过捕捉用户行为及偏好数据,以智能化的方式向用户推荐最有可能感兴趣的产品。

在金融产品推荐中,最常见的方法是协同过滤算法,通过分析用户对金融产品的购买、关注等行为,构建用户与产品之间的关系矩阵。然而,金融产品的属性会随着时间不断变化,例如收益率、风险水平等特性都可能受到市场波动的影响。因此,时序因素在金融产品推荐中的重要性显得尤为突出,传统的协同过滤算法在应对时序变化和复杂动态的场景时显得力不从心。此外,金融产品推荐领域还存在新用户冷启动问题,即对于新用户缺乏足够的历史数据,推荐效果不佳,影响了用户满意度及新用户留存率。基于上述问题,本文提出了一种基于深度学习的金融产品推荐算法,利用Transformer框架的优势,构建一种名为R-Transformer的推荐模型,并针对新用户冷启动问题提出了新的优化方案。

(2) 基于Transformer的金融产品推荐算法R-Transformer。时序因素在金融产品推荐中扮演着重要角色,传统推荐算法难以有效捕获产品特征和用户偏好随时间的动态变化,而深度学习模型尤其是T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值